Your Selections

Hybrid electric vehicles
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

 

Impact of Vehicle Electrification on Brake Design

Maruti Suzuki India, Ltd.-Vipul Gupta
  • Technical Paper
  • 2019-28-2499
To be published on 2019-11-21 by SAE International in United States
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc. Extent of electrification defines in turn extent of recuperation possible, extent of increase in vehicle weight, availability of vacuum and NVH of powertrains. Extent of recuperation is constrained by motor generator…
 

Noise and vibration simulations method for electric hybrid tractor powertrain.

Tafe Motors and Tractors Limited-Ishwinder Pal Singh Sethi, Anand Shivajirao Patil
  • Technical Paper
  • 2019-28-2469
To be published on 2019-11-21 by SAE International in United States
Internal combustion (IC) engines have been serving as prime source of power in tractors, since late 19th Century. Over this period, there have been significant improvements in IC engine technology leading to increased power density, reduction in tailpipe emissions and refinement in powertrain noise of tractors. As the regulations governing tailpipe emissions continue to be more stringent, original equipment manufacturers also have initiated work on innovative approaches such as diesel-electric hybrid powertrains to ensure compliance with new norms. However, introduction of such technologies may impact customer’s auditory, vibratory and drivability perceptions. Absence of conventional IC engine noise, association of electric whistle and whine, torque changes with activation/de-activation of motors and transmission behavior under transient conditions may result in new NVH issues in hybrid electric vehicles. The following paper addresses these concerns and introduces a multi-physics simulation model to investigate and mitigate these effects. The multi physics simulation model presented in this paper incorporates the multi-disciplinary domain of internal combustion engine thermodynamics, electric components, mechanical systems, control systems and the vehicle response.
 

Review of architecture and control strategies of Hybrid Electric and Fuel Cell Technology for Automotive Application

ARAI-Rakesh Vilasrao Mulik
VIT Universtity-Senthil Kumar Senthilkumar
  • Technical Paper
  • 2019-28-2509
To be published on 2019-11-21 by SAE International in United States
Well-functioning and efficient transport sector is a requirement for economic and social development in the 21st century. Another side of this transport sector is responsible for a many negative social and environmental effects, like a significant contribution to global greenhouse gas emissions, air pollution and reduction in fossil fuels resources. It is need of time to shift to a greener and low carbon economy and for that it is necessary to improve the ways in which energy is produced and used. Other energy sources like battery, fuel cells (FC), supercapacitors (SC) and photovoltaic cells (PV) are the alternative solutions to the conventional internal combustion engines (ICE) for automobiles. Development of Hybrid electric vehicles (HEV) along with other cleaner vehicle technologies like Fuel cell electric vehicles (FCV), battery electric vehicles are continuously increasing in the list of green energy options. This paper presents a comprehensive review on various control strategies and Energy Management Systems (EMS) proposed and developed for HEVs. This paper revisits architecture of HEVs and different types of HEVs. An optimum control strategy for…
 

Future hybrid Vehicles with advanced 48V electrified drive train technology to reduce Co2 emission

Mercedes-Benz R&D India Pvt Ltd-Chandrakant Palve, Pushkaraj Tilak
  • Technical Paper
  • 2019-28-2487
To be published on 2019-11-21 by SAE International in United States
Future hybrid vehicles with advanced 48V electrified drive train technology to reduce CO2 emission. Chandrakant Palve* Pushkaraj Tilak * * Mercedes-Benz Research & Development India Pvt. Ltd. Bangalore. India. Key Words: 48V, CO2, P3 Hybrid, Electrified powertrain, AMT, emission, shift comfort, motor Research and/or Engineering Questions/Objective Global automotive industry is putting effort in moving from conventional powertrain technology to hybrid & electric powertrains. This efforts plays a vital role to achieve cleaner environment, improved performance, reduced fossil-fuel dependency, low noise for meeting regulatory & customer requirements. Automotive industry is facing a challenge of meeting stringent CO2 emission targets of 95g & 175g per kilometer for passenger cars & light commercial vehicles respectively. 48V is an important stepping stone in this direction. By taking motivation from this strategic challenge, advanced 48V P3 electrified powertrain technology has been proposed. The objective of this research is a novel electrified powertrain which offers Dual Clutch Transmission (DCT) level of shift comfort in combine with CO2 benefit without additional cost and weight penalty. Methodology The present study describes a unique…
 

Development of Systematic Technique for Design of Electric Motor Mounting System in EV/ HEV Application

Automotive Research Association of India-Ravindra Kumar, Mayur Shimpi
  • Technical Paper
  • 2019-28-2508
To be published on 2019-11-21 by SAE International in United States
Last decade has been era of environmental awareness. Various programs have launched for making devices and appliances eco-friendly. This initiative has lead automobile industry toward hybridization and now total electrification of vehicles. Electric motor produce high frequency vibration along with high torque. Hence it needs to be isolated properly & carefully as these vibrations can damage other automobile parts. Dynamic response of electric motor is different from response of IC engines, so use of engine mounting design method is not suitable for designing mounting system for electric motor mounting system. In design of electric motor mounting, position and orientation of elastomeric mounts plays important role. Mounts used in passive vibration isolation are made up of elastomeric material which are stiff and resilient in nature. Ideal positions for elastomeric mounts are found by drawing free body diagrams (FBD) of force distribution on mount due to electric motor at various position in a single plane. Both 4- point and 3- point mounting system are designed and considered for analytical and experimental investigation of force and displacement transmissibility.…
 

Next generation HEV powertrain design tools: roadmap and challenges

Politecnico di Torino-Pier Giuseppe Anselma, Giovanni Belingardi
  • Technical Paper
  • 2019-01-2602
To be published on 2019-10-28 by SAE International in United States
Hybrid electric vehicles (HEVs) represent a fundamental step in the global evolution towards transportation electrification. Nevertheless, they exhibit a remarkably complex design environments with respect to both traditional internal combustion engine vehicles and battery electric vehicles. Therefore, innovative and advanced design tools are crucially required to effectively handle the increased complexity of HEV development processes. This paper aims at providing a comprehensive overview of past and current advancements in HEV powertrain design methodologies. Subsequently, major simplifications and limits of current HEV design methodologies are detailed. The final part defines research challenges that need accomplishment to develop the next generation HEV architecture design tools. These particularly include the application of multi-fidelity modeling approaches, the embedded design of powertrain architecture and on-board control logic and the endorsement of multi-disciplinary optimization procedures. Resolving these issues may indeed remarkably enhance the widespread adoption of HEVs in the global vehicle market.
 

Eco-Driving Strategies for Different Powertrain Types and Scenarios

Argonne National Laboratory-Simeon Iliev, Eric Rask, Kevin Stutenberg, Michael Duoba
  • Technical Paper
  • 2019-01-2608
To be published on 2019-10-28 by SAE International in United States
Connected automated vehicles (CAVs) are quickly becoming a reality, and their potential ability to communicate with each other and the infrastructure around them has big potential impacts on future mobility systems. Perhaps one of the most important impacts could be on network wide energy consumption. A lot of research has already been performed on the topic of eco-driving and the potential fuel and energy consumption benefits for CAVs. However, most of the efforts to date have been based on simulation studies only, and have only considered conventional vehicle powertrains. In this study, experimental data is presented for the potential eco-driving benefits of two specific intersection approach scenarios and four different powertrain types. The two intersection approach scenarios considered in this study include an approach to a red light where coming to a complete stop is avoidable and one where a complete stop is determined necessary thanks to advance information from vehicle to infrastructure communication (V2I). The four powertrain types tested in this study include an advanced conventional vehicle, a conventional vehicle with idle stop-start capability,…
 

Prototype design of a small scale thermionic energy generator for waste heat recovery in hybrid electric vehicle.

BSDU-Kantaprasad Kodihal, Ankur Sagar
  • Technical Paper
  • 2019-28-0027
To be published on 2019-10-11 by SAE International in United States
The sustainability of energy generation is primarily based on the effectiveness of the methods used for minimizing the wastes and optimum utilization of available energy resources. Mobility and its ease is therefore being an essential component of development. Automotive technology is an area where methods are explored in recent times to provide sustainable solution for reduction of fuel consumption and carbon emission by switching to hybrid technology and electric vehicles where regeneration of energy plays an important role. At present the research is focused on achieving methods of solid state conversion of heat into electricity but its limited to thermoelectric which has lower conversion efficiency. A comparative analysis of the direct energy convertors shows that thermionic energy conversion stands better with a higher conversion efficiency. Very close and non contact type of electrode spacing having electrical insulation provided with vacuum or inert gas environment is the basic requirement while designing any thermionic energy generator. Identifying these key research challenges, this article discusses a design of a prototype small scale thermionic generator. The paper hence explores…
 

Recent trends on drivetrain control strategies and battery parameters of a hybrid electric vehicle

BITS Pilani-Sandip Deshmukh
VNR VJIET-Pavan Bharadwaja Bhaskar, Prashanth Khannan, Amjad Shaik
  • Technical Paper
  • 2019-28-0155
To be published on 2019-10-11 by SAE International in United States
Environmental consciousness is being developed in each and every sector, automotive industry has concentrated in a greater manner. Reduction of tail pipe emission was concentrated and found that hybridization can ensure better results. Hybrid electric vehicle operates on electric motor as well as internal combustion engine. Battery power is one the major source of energy for driving electric motor and different battery technologies have been developed. Battery management system (BMS) controls battery parameters like State of Charge (SoC), State of Health (SoH) and Depth of Discharge (DoD) which definitely has an impact on power-torque ratings. Various drive train configurations are developed based on the power-torque requirements and size of engine/electric motor. Maintaining proper flow of energy can have better reduction in emissions, more battery life, less fuel consumption and optimum power-torque ratings. Power and torque has to be varied based on the driver’s requirement, maximum power and torque may not be required all the time and that is the area to capitalize some efficiency. Higher fuel efficiency lies in managing energy flow from various power…
 

Amelioration of modular mobility by adopting split cell solar panel cleaning and cooling therof

Sri Krishna College of Engg. and Tech.-Soundararajan Ranganathan, Ajith Raja, Arunpragash Mohana Sundaram, Ashwanth Pranav Selvamani
  • Technical Paper
  • 2019-28-0078
To be published on 2019-10-11 by SAE International in United States
In photovoltaic system the efficiency of solar cells is determined in combination with latitude and climate. The electricity generation in photovoltaic cell is more in the morning time than in the afternoon time. This is due to the fact that an increase in solar cell temperature leads to a decrease in efficiency of the solar panel. This work aims to provide necessary cooling to the solar panel for favourable output during noon time. Normally electrical modular vehicles use non-split cell solar panels. In order to increase the efficiency, we are using split cell solar panel as it increases voltage by halving the size of the silicon chips. Thus, halving the cells results in increasing efficiency and lowering the operation temperature. The solar panel should be maintained at a particular temperature by adopting sprinkling of water method in solar panel for hybrid vehicles. The proposed system consists of storage tank, temperature sensor, water sprinkle jets attached to the hybrid vehicle. When the temperature increases beyond the limit, the temperature sensor provides signal to the water jets…