Your Selections

Hybrid electric vehicles
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

new

Control Strategy for Hybrid Electric Vehicle Based on Online Driving Pattern Classification

SAE International Journal of Alternative Powertrains

University of Alabama, USA-Zhengyu Yao, Hwan-Sik Yoon
  • Journal Article
  • 08-08-02-0006
Published 2019-12-04 by SAE International in United States
Hybrid Electric Vehicles (HEVs) are gaining popularity these days mainly due to their high fuel economy. While conventional HEV controllers can be classified into rule-based control and optimization-based control, most of the production vehicles employ rule-based control due to their reliability. However, once the rule is optimized for a given driving pattern, it is not necessarily optimal for other driving patterns. In order to further improve fuel economy for HEVs, this article investigates the feasibility of optimizing control algorithm for different driving patterns so that the vehicle maintains a high level of optimality regardless of the driving patterns. For this purpose, a two-level supervisory control algorithm is developed where the top-level algorithm classifies the current driving pattern to select optimal control parameters, and the lower level algorithm controls the vehicle power flow using the selected control parameters in a similar way to conventional supervisory controllers. To study the effectiveness of the proposed algorithm, a HEV model with a rule-based control algorithm is modified such that the control parameters are optimized for different driving patterns, and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Impact of Vehicle Electrification on Brake Design

Maruti Suzuki India, Ltd.-Vipul Gupta
  • Technical Paper
  • 2019-28-2499
Published 2019-11-21 by SAE International in United States
Electric vehicles have come full circle from being primary vehicle type in 19th century (much before IC powered vehicles) to 21st century where major stake holders in mobility have announced plans towards vehicle electrification. Apart from battery & powertrain system, braking system is area which will undergo major changes because of vehicle electrification. But Why? Major keywords are regenerative braking, increased vehicle weight, no or insufficient vacuum from engine and silent powertrains. This paper tries to outline potential impact on hydraulic brake system & its component design for M1 and N1 category of four wheelers with advent of vehicle electrification. Needless to say extent of change will vary depending upon extent of electrification and extent of recuperation during regenerative braking. Extent of electrification depends upon whether vehicle is range extender type hybrid vehicle, plug in hybrid vehicle, battery electric vehicle, fuel cell vehicle etc. Extent of electrification defines in turn extent of recuperation possible, extent of increase in vehicle weight, availability of vacuum and NVH of powertrains. Extent of recuperation is constrained by motor generator…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Review of architecture and control strategies of Hybrid Electric and Fuel Cell Technology for Automotive Application

ARAI Academy-Rakesh Vilasrao Mulik
VIT Universtity-Senthil Kumar Senthilkumar
  • Technical Paper
  • 2019-28-2509
Published 2019-11-21 by SAE International in United States
Well-functioning and efficient transport sector is a requirement for economic and social development in the 21st century. Another side of this transport sector is responsible for a many negative social and environmental effects, like a significant contribution to global greenhouse gas emissions, air pollution and reduction in fossil fuels resources. It is need of time to shift to a greener and low carbon economy and for that it is necessary to improve the ways in which energy is produced and used. Other energy sources like battery, fuel cells (FC), supercapacitors (SC) and photovoltaic cells (PV) are the alternative solutions to the conventional internal combustion engines (ICE) for automobiles. Development of Hybrid electric vehicles (HEV) along with other cleaner vehicle technologies like Fuel cell electric vehicles (FCV), battery electric vehicles are continuously increasing in the list of green energy options. This paper presents a comprehensive review on various control strategies and Energy Management Systems (EMS) proposed and developed for HEVs. This paper revisits architecture of HEVs and different types of HEVs. An optimum control strategy for…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Regenerative Braking Cooperative Control of Hybrid Electric Vehicle Based on System Efficiency Optimization

Chongqing University-Yang Yang, Jing Chen, Chang Luo, Qingsong Tang
  • Technical Paper
  • 2019-01-5089
Published 2019-11-19 by SAE International in United States
In order to improve the performance of electro-hydraulic composite braking system of hybrid electric vehicle (HEV), a new type of plug-in HEV with dual motor was taken as the research object. The model of motor loss was built to achieve maximum motor efficiency, and the hydraulic braking system model, which can dynamically control pressure, was built. Based on the optimization of a motor’s continuously variable transmission (CVT) joint efficiency, the real-time optimal allocation strategy based on threshold method and cooperative control strategy of the electro-hydraulic composite braking system were brought out to recover most of the regenerative energy under the premise of ensuring safety. The model was built to verify the performance by AMESim-Simulink. The results show that the control strategy can take the advantages of dual-motor braking recovery system, increase braking energy recovery rate, effectively improve the braking safety and ride comfort of the vehicle, and reduce braking force fluctuation.
This content contains downloadable datasets
Annotation ability available
new

Hybrid Transmission for Optimizing Input Machine Operation

SAE International Journal of Alternative Powertrains

University of Split, Croatia-Damir Jelaska, Milan Perkušić, Srdjan Podrug, Vjekoslav Tvrdić
  • Journal Article
  • 08-08-02-0008
Published 2019-11-14 by SAE International in United States
The hybrid transmission with a single energy source is presented in this article, which has the ability to, under certain constraints, transfer the energy from the input shaft with arbitrary variable speed onto the output shaft with the variable speed required for an output machine or propelling member operation - without a control system. The transmission is in a way similar to a power-split transmission for HEVs, but without a driving battery and control system. By adding the control system, the optimal run of the input machine is enabled. As an example, the transmission is designed for a passenger automobile. For the chosen automobile type, the power train is modeled in MATLAB/Simulink. In drive simulations during the single New European Driving Cycle (NEDC), the powertrain efficiency and fuel consumption are obtained and compared with two comparable vehicles: the conventional one and the advanced HEV. The competitiveness of the proposed transmission is proven.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of a Coordinated Engine-Start Control Strategy for P2 Hybrid Electric Vehicle

Tianjin University-Chen Zhao, Bingfeng Zu, Yuliang Xu, Zhen Wang, Lina Liu, Jianwei Zhou
Weichai Power Co Ltd-Guangxing Zhao
Published 2019-11-04 by SAE International in United States
P2 hybrid electric vehicle is the single-motor parallel configuration integrating with an engine disconnect clutch (EDC) between the engine and the motor. The key point with P2 hybrid electric vehicle is to start the engine utilizing the single driving motor while still propelling the vehicle, which requires an appropriate engine-start control strategy and a high mechanical performance of EDC. Since the space for EDC is limited, EDC torque response is difficult to follow the torque command, which complicates the issue of precisely controlling the clutch. Consequently, methods proposed in massive papers are inappropriate for current EDC of target vehicle. Considering that slip control of shifting clutch also contributes to reducing impact of engine start assisted by EDC, a detailed engine-start control strategy was proposed to simplify the control of EDC for being applied to actual target vehicle. Furthermore, the control strategy proposed in this paper was utilized to realize driving mode transformation from motor-only to engine-only. In this paper, a detailed hybrid electric vehicle simulation model was established with the consideration of dynamic characteristics of…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study on Engine Start Vibration Index in a Hybrid Powertrain Using Torque Sensor and Cylinder Pressure Sensor

Tsinghua University-Fuyuan Yang, Lei Du, Yaodong Hu
Published 2019-11-04 by SAE International in United States
This paper presents an investigation of drivability issue of engine start-stop. Hybrid vehicles provide excellent benefits regarding fuel efficiency and emission. However, vibration results from constant engine start and stop events generate drivability issues, thus compromising driving comfort. This paper has designed a high speed torque sensor to capture instantaneous torque at the engine shaft. Its consequences help to find out the most suitable index of vibration severity. This paper is organized in four sections. The first section introduces the powertrain to be studied. The second section introduces development of a specially designed torque sensor. The torque sensor is installed between the engine and ISG (Integrated Starter Generator), alongside with an encoder. The torque sensor is utilized to collect the instantaneous shaft torque on occasion of engine start. In the third section, this paper has performed two experiments. Firstly, a typical engine start process (from 0 to 650 rpm) is studied. Instantaneous shaft torque, encoder signal and cylinder pressure signals are gathered and synchronized. Cranking phase and initial combustion phase is observed. It is concluded…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Research on Test Method for Shielding Effectiveness to Cable of Vehicles

CATARC-Li Jiang, Xichen Chen, Haiming Liu, Zaiyuan Wu, Yun Wang
Published 2019-11-04 by SAE International in United States
With the development of electric vehicles (EVs), hybrid electric vehicles (HEVs) and fuel cell vehicles (FCVS), high voltage and large-current are applied to cables. Therefore, it is important to avoid electromagnetic compatibility (EMC) problems of cables, and a measurement methods is necessary for the shielding effectiveness of shielding cables. This paper discusses the existing test methods of cable shielding effectiveness and summarizes the main problems and deficiencies. Then, according to the practical requirements of high voltage cable testing, the direct injection method based on the national standard GB/T 18655-2018 (modified international standard CISPR 25) is proposed. The test method is verified by constructing a practical test platform. The test result show that the platform built can meet the test requirements of the new energy vehicles (NEVs) GB/T 18387 test frequency band 150k~30MHz, and can also meet the test requirements of the 150k~108MHz frequency band of the key component conducted emission of NEVs.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Optimal Speed Profile for Minimum Vibration during Engine Start Using Pontryagin’s Minimum Principle Approach

Tsinghua University-Lei Du, Liangfei Xu, Yaodong Hu, Minggao Ouyang, Fuyuan Yang
Published 2019-11-04 by SAE International in United States
An imperceptible engine start is critical to the acceptance of hybrid vehicles. This paper focusses on an optimal control problem that tries to reduce vibration during engine start. Efforts are made to obtain the optimal speed trajectory that could cause minimum vibration during engine start. In the first section, the target diesel powertrain is introduced. A four cylinder diesel engine is coaxially paralleled with an ISG motor. The ISG motor serves as the engine starter and engine flywheel. Its dynamic model is established using crank-link dynamics. Secondly, an index is brought out to evaluate the severity of vibration. The cylinder pressure variation is the main cause of engine torque ripple, which in turn results in engine speed fluctuation. The square of the angular acceleration is chosen as the index of vibration. The index shows a positive relation of cylinder pressure in terms of amplitude. Then, the author models this problem as a continuous-time optimal control problem with a fixed terminal time and a partially free terminal state, then solve it by the Pontryagin’s minimum principle.…
Annotation ability available
Open Access
new

ERRATUM

SAE International Journal of Alternative Powertrains

National Taiwan University, Taiwan-Ming-Yen Chen, Kang Yang, Yun-Zhong Sun, Jung-Ho Cheng
  • Journal Article
  • 08-08-01-0004.1
Published 2019-11-01 by SAE International in United States