The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Fuel cells
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Natural Gas: Meeting CO2 Emission Targets Here and Now

Westport Fuel Systems-David Mumford
  • Technical Paper
  • 2020-37-0024
To be published on 2020-06-23 by SAE International in United States
Global energy consumption trends are running counter to the need to rapidly and drastically reduce greenhouse gas (GHG) emissions. The increasing demand for energy and associated growth in emissions means that we must deploy market-ready, commercially-available solutions now. Europe’s recently enacted heavy-duty CO2 regulations require truck OEMs to achieve a fleet average CO2 reduction of 15% (by 2025) and 30% (2030) from the 2019 industry baseline, with significant fines for missing these targets. OEMs are under considerable pressure to abandon the internal combustion engine (ICE) and move toward fuel cells and battery electric solutions. This drive away from ICEs has gathered considerable momentum, but also misses the short term reality – the infrastructure and overwhelming mass of existing product is built on the ICE, and it will take time and considerable investment to replace. In the automotive sector, the path to electric vehicles is already starting to evolve, however cost-competitive, commercially available production solutions are still in their infancy for the commercial heavy-duty trucking sector. This paper will focus on alternative fuel options for heavy-duty…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Issues Concerning the Use of Fuel Cells in Electric Ground Vehicles

H2SG Energy Pte Ltd.-Bart Kolodziejczyk
  • Research Report
  • EPR2020002
To be published on 2020-05-13 by SAE International in United States
Lately, the idea of using hydrogen in automotive applications is gaining significant momentum. However, the concept of using clean hydrogen fuel generated from water via electrolysis is nothing new. Because of numerous challenges, previously hydrogen has never managed to become a mainstream industrial or automotive fuel. A decade ago, an attempt to introduce hydrogen for mobility failed miserably and for good reasons. Back then, the fuelcell technology, which efficiently converts hydrogen and atmospheric oxygen into electricity, was not as advanced as it is today. In addition, the fuel cell prototypes were bulky and expensive. After the first failed wave of hydrogen-based economy implementation followed by another ten years of development, hydrogen is back, and it seems that this time it is here to stay. The decade of research allowed for improvements in materials, components, and performance of entire fuel cell systems. In addition, new manufacturing tools and techniques have been developed to reduce system costs. Today’s fuel cell systems use a fraction of platinum catalysts compared to fuel cells ten years ago, yet their performance…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Hydrogen Fuel Cell Buses: Modelling and Analysing Suitability from an Operator and Environmental Perspective

Queen's University Belfast-Darryl Doyle, Andrew Harris, Steve Chege, Lucinda Douglas, Juliana Early
Wrightbus-Robert Best
  • Technical Paper
  • 2020-01-1172
To be published on 2020-04-14 by SAE International in United States
Global commitments to decrease greenhouse gas emissions have led to a shift to alternative powertrains in the transport sector. In addition to this, stricter controls on air quality within cities has seen the introduction of zero emission zones, requiring vehicles with full zero emission capabilities. As a result, there is growing interest in hydrogen fuel cell electric buses (FCEBs) as a zero local emission vehicle with superior range, operational flexibility and refuelling time than other clean alternatives e.g. battery electric buses (BEBs). This is illustrated in increased investment through projects such as JIVE/JIVE2, which are deploying nearly 300 FCEBs and refuelling infrastructure in Europe by the early 2020s. This paper details the performance and suitability analysis of a proposed FCEB, using a quasistatic backwards-facing Simulink powertrain model. The model is validated against existing vehicle data (Mk1), allowing it to be further leveraged for predictions of an advanced future production vehicle (Mk2) with next generation motors and fuel cell stack. The modelled outputs are used for a comparison of the FCEB performance to an equivalent BEB…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Progress Review on Heating Methods and Influence Factors of Cold Start for Automotive PEMFC System

Tongji University-Pengcheng Liu, Sichuan Xu
  • Technical Paper
  • 2020-01-0852
To be published on 2020-04-14 by SAE International in United States
Fuel cell vehicles (FCV) have become a promising transportation tool because of their high efficiency, fast response and zero-emission. However, the cold start problem is one of the main obstacles to limit the further commercialization of FCV in cold weather countries. Many efforts have made to improve the cold start ability. This review presents comprehensive heating methods and influence factors of the research progress in solving the Proton Exchange Membrane Fuel Cells (PEMFC) system cold start problems with more than 100 patents, papers and reports, which may do some help for PEMFC system cold start from the point of practical utilization. Firstly, recent achievements and goals will be summarized in the introduction part. Then, regarding the heating strategies for the PEMFC system cold start, different heating solutions are classified into self-heating strategies and auxiliary-heating heating depending on their heating sources providing approach. Then, the next part will review the main influence factors for PEMFC system cold start, including the fuel cell stack, PEMFC system integration and design, cold start control strategies. Shutdown purge and heating…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Effect of Geometry Variation in a Polymer Electrolyte Membrane Fuel Cell

Siemens Digital Industries Software-Carlo Locci, Chris Lueth, Huong Nguyen, Karin Frojd
  • Technical Paper
  • 2020-01-1174
To be published on 2020-04-14 by SAE International in United States
Water transport at high current densities is of main concern for polymer electrolyte membrane (PEM) fuel cells. The water content of the membrane must be high enough to provide maximum electrical conductivity and thus optimal stack performance. Dry-out may also lead to membrane degradation. However, a too high level of humidity leads to cell flooding, blocking the air and fuel flows to the catalyst sites and thus the reactions, resulting in a drop-in efficiency. Fuel cells water transport physics requires further investigation due to its complexity [1,2] and numerical modelling can improve the fundamental understanding of the phenomena. In this work, a 3D comprehensive model for fuel cells is presented. The PEM fuel cell is modelled in Siemens Simcenter STAR-CCM+ [3]. Anode and cathode GDL are modelled as porous media, with electrochemical reactions calculated in an infinitely thin catalyst layer. The membrane is modelled as a solid block including proton and water transport with electro-osmotic drag as well as ohmic heating. A two-phase approach is used to model the gas mixture and liquid water transport…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Development of the purge controller design based on H2 concentration estimator in Fuel Cell Electric Vehicle

Hyundai Motor Group-Soonwoo Kwon, Joonyong Lee, Soonill Jeon
  • Technical Paper
  • 2020-01-0854
To be published on 2020-04-14 by SAE International in United States
The optimal control of anode H2 concentration in fuel cell is the key performance parameter for efficiency and durability of the FCEV. Due to the immaturity of the H2 concentration sensor, the anode H2 concentration estimator has been developed based on the knowledge of physical laws. Modeling simplification of plumbing and duct in H2 supply system causes estimation error depending on the driving cycle and environment condition, but proper design of calibration parameters can make the error within reasonable range. In this paper, mathematical model of H2 concentration estimator is proposed and the effectiveness of purge controller based on the estimator is demonstrated.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cost-Efficient Cathode Air Path for PEM Fuel Cell Systems

MANN+HUMMEL GmbH-Michael Harenbrock, Alexander Korn, Andreas Weber
MANN+HUMMEL Innenraumfilter GmbH & Co.KG-Eva Hallbauer
  • Technical Paper
  • 2020-01-1176
To be published on 2020-04-14 by SAE International in United States
Fuel cell technology can play a major role in reducing transportation-related emissions, especially in heavy-duty, long-haul applications. Consequent transfer of technology from air supply systems for combustion engines to cathode air paths serves as an enabler for necessary system cost reduction. To achieve the required system lifetime, the supply of clean air is essential. Gases like NOx, SO2 and NH3 poison the catalyst, leading to increased stack degradation rates. Effective removal with functionalized activated carbons enhances the catalyst´s lifetime. Research on real-life concentrations of these contaminants under different driving patterns and road profiles enables knowledge-based design of cathode air filter elements. To prevent flooding of components like air filter, humidifier, or stack, water separators are integrated at different position inside the system. Plastic air ducts with integrated sensors and flaps required to manage the air flow connect the different functional components. Broadband silencers are applied to reduce noises inside the system, e.g. generated by the compressor. Essential components like humidifier and air-cooler can easily be incorporated into the system. In the cathode air exhaust path,…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Investigation of the operating conditions on the water and thermal management for a polymer electrolyte membrane fuel cell by one-dimensional model

Tongji Universtiy-Xuhui Wang, Yaqian Dong, Sichuan Xu
  • Technical Paper
  • 2020-01-0856
To be published on 2020-04-14 by SAE International in United States
Water and thermal management is an essential issue that influences performance and durability of a polymer electrolyte membrane fuel cell (PEMFC). Water content in membrane decides its ionic conductivity and membrane swelling favors the ionic conductivity, resulting in decreases in the membrane’s ohmic resistance and improvement in the output voltage. However, if excessive liquid water can’t be removed out of cell quickly, it will fill in the pores of catalyst layer (CL) and gas diffusion layer (GDL) then flooding may occur. It is essential to keep the water content in membrane at a proper level. In this work, a transient isothermal one-dimensional model is developed to investigate effects of the relative humidity of inlet gas and cell temperature on performance of a PEMFC. Comprehensive physical and chemical phenomenon inside the cell is included, especially the mass transfer of hydrogen, oxygen, vapor and liquid water in gas channels, GDL and CL and non-frozen membrane water in ionomer. Phase change between vapor and liquid water is also considered. The cell’s performances at the conditions of the different…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Large-Scale Simulation of PEM Fuel Cell Using a “3D+1D” Model

Imperial College London-Yang Jiang
Tianjin University-Biao Xie, Guobin Zhang, Yan Yin, Qing Du, Kui Jiao
  • Technical Paper
  • 2020-01-0860
To be published on 2020-04-14 by SAE International in United States
Nowadays, proton exchange membrane (PEM) fuel cell is widely seen as a promising energy conversion device especially for transportation application scenario because of its high efficiency, low operation temperature and nearly-zero road emission. Extensive modeling work have been done based on different dimensions during the past decades, including one-dimensional (1D), two-dimensional (2D), three-dimensional (3D) and intermediate combinations in between (e.g. “1+1D”). 1D model benefits from a rationally-chosen set of assumptions to obtain excellent calculation efficiency, yet at the cost of accuracy to some extent. In contrast, 3D model has great advantage over 1D model on acquiring more comprehensive information inside the fuel cell. For macro-scale modeling work, one compromise aiming to realize both acceptable computation speed and reasonable reflection of cell operation state is to simplify the membrane electrode assembly (MEA). Therefore in this study, a “3D+1D” model is developed in which the 3D domain contains flow field and gas diffusion layer (GDL) of cathode side. The remaining part of MEA and the anode side are treated as 1D domain. The model considers two-phase flow…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Parameter Identification for a Proton Exchange Membrane Fuel Cell Model

Tongji University-Hao Yuan, Haifeng Dai, Xuezhe Wei
  • Technical Paper
  • 2020-01-0858
To be published on 2020-04-14 by SAE International in United States
The proton exchange membrane fuel cell (PEMFC) system has emerged as the state-of-art power source for the electric vehicle, but the widespread commercial application of fuel cell vehicle is restricted by its short service life. An enabling high accuracy model holds the key for better understanding, simulation, analysis, subsystem control of the fuel cell system to extract full power and prolong the lifespan. In this paper, a quasi-dynamic lumped parameters model for a 3kW stack is introduced, which includes filling-and-emptying volume sub-models for the relationships between periphery signals and internal states, static water transferring sub-model for the membrane, and empirical electrochemical sub-model for the voltage response. Several dynamic experiments are carried out to identify unknown parameters of the model. According to the periphery measurable signals, the model is parameterized using a hybrid genetic algorithm (GA)/particle swarm optimization (PSO) method, which combined the advantages of conventional GA and PSO to reduce risks of being trapped into local optima. Comparison of the identified results and test voltages shows that the model is capable of predicting the voltage…