The SAE MOBILUS platform will continue to be accessible and populated with high quality technical content during the coronavirus (COVID-19) pandemic. x

Your Selections

Engine lubricants
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Advanced Methods to handle LSPI in TGDI engines

MAHLE Engine Components India, Chennai-Hariprasath ARIVUKKARASU, Rajkumar Mani
Vellore Inst. of Technology, Vellore-Sekarapandian N, Ashok KANNAIYAN, Selvaraji Muthu
  • Technical Paper
  • 2020-28-0008
To be published on 2020-04-30 by SAE International in United States
In order to meet the stringent emission norms like EU6 and EU7 together with CAFÉ/CAFC norms, down-sizing of the engine is one of the thrust areas of focus among the OEMs. To this end, keeping the engine size small but to achieve the required power output, advanced Turbo charged Gasoline Direct Injection engine technology (TGDI) has emerged. However, TGDI technology is susceptible to an abnormal combustion phenomenon termed as Low Speed Pre-Ignition (LSPI) event. This event happens prior to the intended combustion, which causes the catastrophic engine damage. Several studies in terms of simulation and experiments to understand this phenomenon are reported in the literature. The main factors influencing this occurrence are found to be engine design and calibration, fuel types and engine oil formulation (in terms of calcium content). In this paper, advanced methods to handle the LSPI occurrence severity and component level advances in design robustness to avoid the engine damage are reported. The developed techniques include robust piston design, advanced pin coating, Piston ring design and coating technologies. In overall, the techniques…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles

Southwest Research Institute-Michael C. Gross, Jonathan Hamermesh, Kyle Jonson, Joshua Alden
  • Technical Paper
  • 2020-01-1282
To be published on 2020-04-14 by SAE International in United States
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input. We present a system for computer control of brake and accelerator inputs on a TBW- and BBW-equipped vehicle. The system injects signals into the vehicle’s wiring harness, bypassing the pedals and obviating mechanical actuation and brake-by-dyno. The system combines feedforward control based on recorded…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Engineering Applications of Multi-Dimensional CFD Analysis of Lubrication System

Cummins India, Ltd.-Ranjit Tawar, Sandesh Chitnis, Sanjeev Bedekar
Simerics Inc.-Chiranth Srinivasan, ShyamSundar Pasunurthi, Veeranagouda Patil, Raj Ranganathan, Dipak Maiti
  • Technical Paper
  • 2020-01-1110
To be published on 2020-04-14 by SAE International in United States
This paper reports on a rigorous, transient, three-dimensional CFD analysis of the complete lubrication system of automotive internal combustion engines. The computational domain of such a model is vast and includes scores of bearings as well as components such as the pump, pressure relief valve, oil filter, oil cooler, piston cooling jets etc. Thus far, the only publication on 3D CFD analysis of a complete engine lubrication system was for a 16-cylinder engine in which the feasibility and the potential engineering opportunities of such a model were demonstrated. The timelines for setting up and running such a complex CFD model are comparable to that of a 1D model. In this paper, the following four topics will be addressed: 1. Showcase the capability of the CFD software tool to accurately, robustly and reliably predict the engine lube system performance of a wide variety of automotive engines with same set of input constants i.e. no tuning. Best analysis practices were developed in order to achieve this goal by compensating for the variabilities that arise in a complex…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Method to Measure Soft Particles from Diesel Type Fuels

KTH Royal Institute of Technology-Botond Csontos, Shriharsha Swarga, Hanna Bernemyr
Scania CV AB-Mayte Pach, Henrik Hittig
  • Technical Paper
  • 2020-01-0344
To be published on 2020-04-14 by SAE International in United States
Renewable fuels have an important role to create sustainable energy systems. In this paper the focus is on biodiesel, which is produced from vegetable oils or animal fats. Today biodiesel is mostly used as a drop-in fuel, mixed into conventional diesel fuels to reduce their environmental impact. Low quality drop-in fuel can lead to deposits throughout the fuel systems of heavy duty vehicles. In a previous study fuel filters from the field were collected and analyzed with the objective to determine the main components responsible for fuel filter plugging. The identified compounds were constituents of soft particles. In the current study, the focus was on metal carboxylates since these have been found to be one of the components of the soft particles and associated with other engine malfunctions as well. Hence the measurement of metal carboxylates in the fuel is important for future studies regarding the fuel’s effect on engines. The first aim of this study was to create synthetic soft particles from biodiesel. Accelerated aging of fuels with different contaminations such as engine oil…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

FCA US LLC-Wensheng Zhang, Erich Gernand
Oakland University-Bingxu Wang, Gary Barber, Na Lyu
  • Technical Paper
  • 2020-01-1069
To be published on 2020-04-14 by SAE International in United States
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode. The results have validated the feasibility of the proposed test system and procedure, which can be used for durability…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The role of NOx in engine lubricant oxidation

Infineum UK, Ltd.-David R. Coultas
  • Technical Paper
  • 2020-01-1427
To be published on 2020-04-14 by SAE International in United States
Engine technology trends like downsizing, direct injection and effective lean NOx aftertreatment have created challenging environments for lubricating oils. Longer contact times of the lubricant with fuel and NOx, higher sump temperatures and higher NOx levels in blow-by gas promote nitration-oxidation driven by the action of NOx and air on hydrocarbons. Nitration-oxidation has often been overlooked as a mechanism of oil oxidation in real world engines. Indeed, the emphasis is almost exclusively on iron catalysed oxidation in bench tests purporting to protect modern engines against lubricant oxidation. This paper will demonstrate that a proprietary bench nitration-oxidation test is capable of reproducing trends in nitrate ester formation and consumption seen in real engines, which also fully explain the resulting impact on lubricant oxidation without the use of iron catalysts.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A New Cavitation Algorithm to Support the Interpretation of LIF Measurements of Piston Rings

Technical University of Munich-Georg Wachtmeister
Technical University of Munich / Tenneco-Fabian H. Ruch
  • Technical Paper
  • 2020-01-1091
To be published on 2020-04-14 by SAE International in United States
Laser induced fluorescence (LIF) is used to investigate oil transport mechanisms under real engine conditions. The engine oil is mixed with a dye that can be induced by a laser. The emitted light intensity from the dye correlates with the residual oil at the sensor position and the resulting oil film thicknesses can be precisely determined for each crank angle. However, the general expectation is not always achieved, e.g. an exact representation of piston ring barrel shapes. In order to investigate the responsible lubrication effects of this behavior, a new cavitation algorithm for the Reynolds equation has been developed. The solution retains the mass conservation and does not use any switch function in its mathematical approach. In contrast to common approaches, no vapor-liquid ratio is used, but one or several bigger bubbles are approximated, as have been observed in other experiments already. As a result, not only the known boundary conditions for the Reynolds equation become unnecessary, but the solution also gives a clearer idea as to the shape of the cavitation bubble. The combination…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Correlation of Cylinder Head Gasket Sealing Analysis Results Between Gasket Element and 3D Continuum Element

Cummins Engine Co., Ltd.-Amit Ozarde
Cummins Inc.-Gene McNay
  • Technical Paper
  • 2020-01-0049
Published 2020-03-10 by SAE International in United States
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders, seal coolant and engine oil transfer ports between the block and head and to ensure no leakage of gasses or fluids out of the block to head joint; as such, it is the most critical sealing application in an engine. In general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. In the case of a solid-sheet metallic gasket, where the gasket is expected to undergo local yielding to provide adequate conformance and sealing, supplier is usually not able to provide the required L/D curve due to difficulties experimentally separating the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve the current analysis approach is to model gasket as 3D continuum elements with considering nonlinear material and contacts. The focus of the procedure…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Technique of Estimating Particulate Matter Emission in Non-Road Engine Transient Cycle

SAE International Journal of Commercial Vehicles

Tafe Motors and Tractor Ltd., India-Ajay Nain
  • Journal Article
  • 02-12-04-0019
Published 2020-02-07 by SAE International in United States
Particulates are a major source of emission from diesel engine. They consist of particles of carbon, sulfates, oil, fuel, and water. These constituents are measured by filtering a sample diluted in a partial- or full-flow tunnel and weighing them. It is a general trend for measuring particulate matter (PM) on cycle basis. But 1-D simulation needs complete PM 3-D contour map considering all engine operating region. It is very tedious work for generating PM on each steady-state point on engine test bed. Hence, Filter smoke meter or opacimeter measurements can be used for estimating PM. Filter smoke meters measured the light reflected from a filter paper through which a known volume of exhaust gas was passed. Opacity meters measure light absorbed by a standard column of exhaust. Both equipments measure visible black smoke comparatively at lower expenditure cost. They are designed to control measurement noise, resolution and repeatability with acceptable accuracy level. Oil consumption and contribution of fuel sulfates are also considered in ISO 8178 R49, D2 and C1, India CEV Stage IIIA, India CPCB…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Engine Oil Fuel Economy: Benefits and Potential Debits of Low Viscosity Engine Oil

SAE International Journal of Advances and Current Practices in Mobility

Afton Chemical Corporation-William B. Anderson, Greg H. Guinther
  • Journal Article
  • 2019-01-2241
Published 2019-12-19 by SAE International in United States
There has been a trend in the automotive industry toward the use of lower viscosity engine oils as fuel economy requirements become more demanding across the globe. Lower viscosity fluids may improve fuel economy due to their improved pumpability, lower churning losses, and thinner lubricating films. However, there is one important caveat related to the use of these fluids: the amount of improvement, if any, is hardware design and application dependent. Standard industry fuel economy tests and engines with differing designs may show divergent responses when using lower viscosity engine oils, not always showing an improved fuel economy response. This paper summarizes the work conducted by the authors to demonstrate how and why the inconsistent results in fuel economy can occur with low viscosity oils.
This content contains downloadable datasets
Annotation ability available