Your Selections

Electric power
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic analysis of electric passenger car using wind turbine concept at front end

ARAI Academy-Snehil Mendiratta, Sugat Sharma
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2396
To be published on 2019-11-21 by SAE International in United States
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9% .
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance & efficiency Improvement of Electric Vehicle Power train

International Centre for Automotive Technology-Devesh Pareek
  • Technical Paper
  • 2019-28-2483
To be published on 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b. Optimization of Design Specs and duty cycle based on real world driving cycles. c. Innovative Heat dissipation techniques to minimize energy loss to heat. d. Efficient Electrical to Chemical Energy conversion and vice versa through use of optimization techniques based on…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Realtime Tuning and optimization of EV traction motors with controllers on E-motor testbench

ARAI Academy-Manoj Desai
Automotive Research Association of India-Monishram Venkataram
  • Technical Paper
  • 2019-28-2478
To be published on 2019-11-21 by SAE International in United States
The need for dedicated development of indigenous electric power-train is becoming much essential in the recent times with upcoming trends and policies. Hence, The validation and optimization of the newly developed electric power-train becomes much crucial in order to ensure smooth real world operation. This can be only possible in E-motor test benches with dedicated equipment for thorough evaluation. Also, there are no practical limitations to check the peak characteristics in a controlled laboratory environment. Initially, the motor is setup by mechanically coupling with the dynamo-meter and the controller in the open loop method with constant parameters to check steady state operability without load or external parameters that affect the torque production and speed of the drive. Then progresses to closed loop method incorporating the feedback control and external parameters including torque loading at the shaft from the dynamo-meter. The output torque is primarily estimated from phase currents and forms as the feedback to alter the input to the drives. In closed loop control, the electric power train is run with either speed control or…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Compensation of Signal Offset, Amplitude Imbalance and Imperfect Quadrature in Rotor Position Sensor Signals for Motor Drives

Samiksha Meshram-Samiksha Meshram
  • Technical Paper
  • 2019-28-2524
To be published on 2019-11-21 by SAE International in United States
In recent years, the use of the electric motors in automotive applications such as electric power steering (EPS), hybrid and electric vehicles has increased. In these fields, rotor position information plays and important role in the field- oriented control concept. It performs a transformation from the stator reference frame to the rotor reference frame and vice versa. This is nothing but the Park and inverse Park transformation. They are typically used to provide accurate absolute rotor position in high-performance motor drive systems because their robustness and reliability make them particularly suited to Automotive Environment. Hence, greater accuracy of these sensor signals is required. However, in reality, the output signals include the position error in the sensor itself as well as error in the sensor signal conditioning circuits. The actual sensor signals have non ideal characteristics such as amplitude imbalance, imperfect quadrature, inductive harmonics, reference phase shift, excitation signal distortion, and disturbance signals. Due to the non-ideal characteristics of these signals, the position information of the Motor is considerably distorted. To solve this problem, the compensation…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Feasibility of Multiple Piston Motion Control Approaches in a Free Piston Engine Generator

West Virginia University-Mehar Bade, Nigel Clark, Parviz Famouri, PriyaankaDevi Guggilapu
  • Technical Paper
  • 2019-01-2599
To be published on 2019-10-22 by SAE International in United States
The control and design optimization of a Free Piston Engine Generator (FPEG) has been found to be difficult as each independent variable changes the piston dynamics with respect to time. These dynamics, in turn, alter the generator and engine response to other governing variables. As a result, the FPEG system requires an energy balance control algorithm such that the cumulative energy delivered by the engine is equal to the cumulative energy taken by the generator for stable operation. The main objective of this control algorithm is to match the power generated by the engine to the power demanded by the generator. In a conventional crankshaft engine, this energy balance control is similar to the use of a governor and a flywheel to control the rotational speed. In general, if the generator consumes more energy in a cycle than the engine provides, the system moves towards a stall. If the generator consumes less energy, then the effective stroke, compression ratio and maximum translator velocity must rise steadily from cycle-to-cycle until the heat transfer losses stop the…
new

Chip Converts Wasted Heat to Usable Energy

  • Magazine Article
  • TBMG-35259
Published 2019-10-01 by Tech Briefs Media Group in United States

Car engines, laptop computers, cellphones, and refrigerators all heat up with overuse. That heat can be captured and turned into energy using a method that produces electricity from heat. The technology uses a silicon chip, also known as a “device,” that converts more thermal radiation into electricity. This could lead to devices such as laptop computers and cellphones with much longer battery life and solar panels that are much more efficient at converting radiant heat to energy.

new

Avoiding Electrical Damage with Conductive Lubrication

  • Magazine Article
  • TBMG-35293
Published 2019-10-01 by Tech Briefs Media Group in United States

At present, 12 volts are required to provide automotive electronic systems — which include vehicle lights, air conditioning, and radio — with sufficient electrical power. With each passing year, new cars get more complicated and high-tech. Additional features such as stop-start motors, hybrid motors, and turbochargers will allow for better fuel economy but will also demand more battery power.

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Strive for Zero Emissions Impact from Hybrids

Continental-Lorenzo Pace, Katrin Konieczny
Volvo Car Corporation-Mats Laurell, Fredrik Ekström
Published 2019-09-09 by SAE International in United States
Since several decades, passenger cars and light duty vehicles (LDV) with spark-ignited engines reach full pollutant conversion during warm up conditions; the major challenge has been represented by the cold start and warming up strategies. The focus on technology developments of exhaust after treatment systems have been done in the thermal management in order to reach the warm up conditions as soon as possible. A new challenge is now represented by the Real Driving Emission (RDE) Regulation as this bring more various, and not any longer cycle defined, cold start conditions. On the other hand, once the full conversion has been reached, it would be beneficial for many Exhaust After Treatment System (EATS) components, e.g. for overall durability if the exhaust gas temperature could be lowered. To take significant further emission steps, approaching e.g. zero emission concepts, we investigate the use of Electrical Heating Catalyst (EHC) also including pre-heating.The clear goal is to have the right temperature in the right place at the right time. Several approaches have been investigated in this paper regarding EATS…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Modeling of a Spark Ignition Engine with Turbo-Generator for Energy Recovery

Istituto Motori CNR - Napoli-Luigi De Simio, Sabato Iannaccone
NETCOM Group - Napoli-Fabio Arminio
  • Technical Paper
  • 2019-24-0084
Published 2019-09-09 by SAE International in United States
Increasingly stringent regulations in the field of pollutant are forcing engine manufacturers to adopt new solutions to contain exhaust emissions, such as Hybrid Electric Vehicles (HEV) or Full Electric Vehicles (FEV).Still far from the wide diffusion of FEV limited from electrochemical storage systems together with the difficulty of creating adequate infrastructure distributed throughout the territory to recharging batteries, the HEV seems to be actually a better solution. The hybrid vehicle is already able to guarantee satisfactory autonomy and low pollution levels by combining the advantages offered by the two technologies of thermal and electric propulsion.Currently on the market there are several types of hybrid vehicles, with different degree of hybridization (electric motor power versus propulsion total power), capacity to store electricity and type of scheme constructive adopted for the integration between the thermal engine and the electric machine.A particular interest is getting the mild-hybrid (or light hybridization) and the micro-hybrid (or minimum hybridization) with 48V electrical system added to the classic 12V one.A possible solution could be the electric turbo-compounding system where a turbine coupled…
This content contains downloadable datasets
Annotation ability available

Low-Cost Thermoelectric Material Works at Room Temperature

  • Magazine Article
  • TBMG-35125
Published 2019-09-01 by Tech Briefs Media Group in United States

The widespread adoption of thermoelectric devices that can directly convert electricity into thermal energy for cooling and heating has been hindered, in part, by the lack of materials that are both inexpensive and highly efficient at room temperature. A new material was developed that works efficiently at room temperature while requiring almost no costly tellurium, a major component of the current state-of-the-art material. Future work could close the slight performance gap between the new material and the traditional material, a bismuth-tellurium-based alloy.