Technical Paper collections have been re-named for better clarity and alignment.x

Your Selections

Electric power
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Cable Impedance Calculations Employed in Designing Aerospace Electrical Power Systems

Astronics AES-Jon Fifield
  • Technical Paper
  • 2020-01-0037
To be published on 2020-03-10 by SAE International in United States
This paper presents design considerations in utilizing cable impedance calculations in the design of an aerospace electrical power system. (EPS) Past wiring design guidelines featured a tabular constructed single-point design reference. This results in a cable selection which adds unnecessary weight and under-utilized the wire’s performance ability when considering a vehicle’s design requirements. Present wiring design guidelines have lagged behind the growing movement to achieve an optimized wire selection. Understanding the shortfalls with past and present wiring design methods will improve future methods to comply with increasingly restrictive vehicle performance requirements. This paper will discuss two of the most important design requirements for future aerospace electrical power and distribution feeders, which are weight and thermal limits assigned to an EPS design.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Extended Endurance Unmanned Aerial Vehicle via Structural Electrical Power Storage and Energy Generation Devices

Geoffrey Smith Oetting
  • Technical Paper
  • 2020-01-0041
To be published on 2020-03-10 by SAE International in United States
Through the substitution of some aircraft structural components with power storage and generation devices that possess adequate structural strength and stiffness, flight endurance time and performance of solar powered unmanned aerial vehicles (UAV’s) may be increased by reducing the parasitic weight penalties of the power systems. This innovation of the ‘Flying Battery’ along with energy generation devices such as structural solar cells, thermo-electric generators, and vibration induced power generators are integral to creating a flying structure that will be more efficient and more useful to the electric powered commercial and hobby markets. This paper discusses plans and the progress toward achieving potential endurance and efficiency increases in unmanned aerial vehicles through laboratory and eventual model flight experiments of novel structural designs for graphene super-capacitors, solar cells, and other power generation devices.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Analysis of the Technical Viability of Biogas Utilization in Compression Ignition Engines for Electric Power Generation

Federal University of Santa Maria - UFSM-Italo Rosa Policena, Rafael Vogt, Geovane Alberto Frizzo Prante, Roberto Antônio Garlet, Mário Eduardo Santos Martins
  • Technical Paper
  • 2019-36-0245
Published 2020-01-13 by SAE International in United States
Increased energy demand and security of energy supply have become a concern in recent decades due to strong industrial growth. The high cost of fossil fuels and the need to reduce the emission of greenhouse gases have made renewable energy sources an attractive object. In this context, biomass becomes interesting and is the second largest source of renewable energy in Brazil, possessing many characteristics similar to fossil fuels. Energy can be obtained by direct burning or by conversion into biofuels, such as biogas, which is composed primarily of carbon dioxide and methane. Methane released directly into the atmosphere has 21 times the greenhouse effect potential of CO2. In this way the importance of the development and improvement of this fuel and of the converter machines, which play a fundamental role in the transformation of biomass into other forms of energy, is justified.This study aims at analyzing the technical viability of application of biogas in compression ignition engines for electric power generation in RCCI operation mode (Reactivity Controlled Compression Ignition) and dualfuel by fumigation. The experimental…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study on Thermal Degradation Characteristics of Ion Exchange Resins of Fuel Cell Vehicles

Engineering Div. ROKI Co., Ltd.-Kaoru Kamo, Motohisa Miyashita
  • Technical Paper
  • 2019-01-2370
Published 2019-12-19 by SAE International in United States
The thermal degradation of ion E/R (ion exchange resin) has been investigated in the pure water generation power plants, but not in electric power generation in Fuel Cell Vehicle (FC-V). Electric power generation fuel cell uses its coolant water of 50wt% ethylene glycol (EG). When EG degraded in the heated condition, ions elute in the coolant. This ion elution reduces the ion E/R performance through reduction of its capacity. This paper describes the effect of thermal degradation of ion E/R in FC-V.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Development of Electric 4WD System For Compact Hybrid Car

NISSAN MOTOR CO., LTD-Yasuhiro Konishi, Masahito Taira, Hideaki Ootsuka Tomohiro Ito, Kantaro Yoshimoto
  • Technical Paper
  • 2019-01-2216
Published 2019-12-19 by SAE International in United States
In 2016, NISSAN launched a new electric power train for compact cars that shares the traction system for electric vehicle. NISSAN had utilized this high potential electric powertrain to combine the simple 4WD system, driven by electric motor. In 2002, NISSAN released a simple electric motor driven 4WD system for compact car that converts the engine output to electricity and drives the rear wheels with a direct current (DC) electric motor. This paper describes the system configuration and the value of new driving by combination of electric 4WD and new electric powertrain.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Semiconductor Safety Concepts for the Power Distribution of Automated Driving

SAE International Journal of Connected and Automated Vehicles

Infineon Technologies AG, Germany-Stefan Schumi
University of Technology Graz, Austria-Daniel Watzenig
  • Journal Article
  • 12-02-04-0017
Published 2019-12-18 by SAE International in United States
Automated driving is a highly complex idea. It involves mechanics, electronics and chemistry, artificial intelligence, human intelligence and high computational efforts. Apart from those aspects, the automated intelligence is run using electricity. An unintended interrupt can easily lead to a hazard. Therefore, a highly reliable power distribution has to be developed. This work focuses on the reliability calculation of such a power distribution concept. It points out what is required and will be in future such that the algorithms for the path planning and control are running in a safe environment according to the ISO 26262 standard.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Rolling Resistance Measurement Procedure for Passenger Car, Light Truck, and Highway Truck and Bus Tires

Highway Tire Committee
  • Ground Vehicle Standard
  • J1269_201912
  • Current
Published 2019-12-10 by SAE International in United States
This SAE Recommended Practice applies to the laboratory measurement of rolling resistance of pneumatic passenger car, light truck, and highway truck and bus tires. The procedure applies only to the steady-state operation of free-rolling tires at zero slip and inclination angles; it includes the following three basic methods:
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

ARAI Academy-Snehil Mendiratta, Sugat Sharma
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2396
Published 2019-11-21 by SAE International in United States
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Performance & Efficiency Improvement of Electric Vehicle Power Train

International Centre for Automotive Technology-Devesh Pareek
  • Technical Paper
  • 2019-28-2483
Published 2019-11-21 by SAE International in United States
Introduction: The advent of electric mobility is changing the conventional mobility techniques and their application in automobiles across all segments. This development comes with challenges ranging across varied sub -systems in a vehicle including Power Train, HVAC, Accessories, etc. Objective: This paper would concentrate on the Power train related sub systems & improvement of the same both in terms of Efficiency & Performance. Methodology: The electric power train consists of three major sub parts: 1. Motor Unit 2. Controller with Power electronics 3. Battery Pack with BMS We would concentrate on improving the overall efficiency and performance of all these subsystems while they perform in vehicle environment and work in tandem by deploying following techniques: a. Improved Regenerative Braking for converting vehicles Kinetic energy into electrical energy using specific algorithms and control techniques b. Optimization of Design Specs and duty cycle based on real world driving cycles. c. Innovative Heat dissipation techniques to minimize energy loss to heat. d. Efficient Electrical to Chemical Energy conversion and vice versa through use of optimization techniques based on…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

CONNECTOR, RECEPTACLE, EXTERNAL ELECTRIC POWER, AIRCRAFT, 270 VDC, 90 KW

AE-8C1 Connectors Committee
  • Aerospace Standard
  • AS81790/1
  • Current
Published 2019-11-15 by SAE International in United States
No Abstract Available.
This content contains downloadable datasets
Annotation ability available