Search
Advanced Search
of the following are true
(
)

Results

Items (212,754)
This SAE Standard covers low voltage primary cable intended for use at a nominal system voltage of 60 VDC (25 VAC) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse.
Cable Standards Committee
This specification covers an aluminum alloy in the form of investment castings (see 8.6).
AMS D Nonferrous Alloys Committee
This ARP provides definitions and background information regarding the physical performance and testing of DDVs. This ARP also provides extensive guidance for the preparation of procurement specifications and functional testing.
A-6B1 Hydraulic Servo Actuation Committee
This document describes a process that may be used to perform the ongoing safety assessment for (1) GAR aircraft and components (hereafter, “aircraft”), and (2) commercial operators of GAR aircraft. The process described herein is intended to support an overall safety management program. It is associated with showing compliance with regulations and also establishing and meeting internal company safety standards. The process described herein identifies a systematic means, but not the only means, to assess continuing airworthiness. Ongoing safety management is an activity dedicated to assuring that risk is identified and properly eliminated or controlled. The safety management process includes both safety assessment and economic decision-making. While economic decision-making (factors related to scheduling, parts, and cost) is an integral part of the safety management process, this document addresses only the ongoing safety assessment process. This ongoing safety assessment process
S-18C Ongoing Safety Assessment Committee
This SAE Aerospace Recommended Practice (ARP) covers the general technical requirements and provides specification guidance for towable deicing vehicles/units equipped with a deicing/anti-icing fluid spraying system. The unit shall be highly maneuverable for applying deicing/anti-icing fluid onto all exterior surfaces of commercial/commuter aircraft to be treated. The unit shall also be suitable for day and night operations and shall be reliable and capable of performing deicing/anti-icing treatments satisfactorily under various precipitation (e.g., moderate snow) and icy weather conditions (e.g., outside air temperatures down to -40 °C/-40 °F) in accordance with the recommendations and instructions specified in aircraft manufacturers’ documents and the current version of AS6285.
G-12E Equipment Committee
This specification covers a carbon steel in the form of bars up through 3.000 inches (76.20 mm) and forgings and forging stock of any size.
AMS E Carbon and Low Alloy Steels Committee
Since the torque converter and fluid coupling are commonly used components of automatic transmissions in industry, SAE appointed a committee to standardize terminology, test procedures, data recording, design symbols, and so forth in this field. The following committee recommendations will facilitate a clear understanding for engineering discussions, comparisons, and the preparation of technical papers. The recommended usages represent the predominant practice or the acceptable practice. Where agreement is not complete, alternates have been included for clarification. This SAE Recommended Practice deals only with the physical parts and dimensions and does not attempt to standardize the design considerations, such as the actual fluid flow angle resulting from the physical blade shape.
Automatic Transmission and Transaxle Committee
This specification covers one type of a non-melting, heat-stable silicone compound, for use in high tension electrical connections, ignition systems, and electronics equipment, for application to unpainted mating threaded or non-threaded surfaces, and as a lubricant for components fabricated from elastomers. This compound is effective in the temperature range from -54 °C (-65 °F) to +204 °C (400 °F) for extended periods. This compound is identified by NATO symbol S-736 (see 6.5).
AMS M Aerospace Greases Committee
This SAE Standard specifies uniform methods for the testing of threadless connections for hydraulic fluid power applications. These connections are intended for general application and hydraulic systems on industrial equipment and commercial products. These connections shall be capable of providing leakproof connections in hydraulic systems operating from 95 kPa vacuum to working pressures specified by the manufacturer. Since many factors influence the pressure at which a hydraulic system will or will not perform satisfactorily, it is recommended that sufficient testing be conducted and reviewed by both the user and manufacturer to ensure that required performance levels are met.
Hydraulic Tube Fittings Committee
This SAE Recommended Practice defines a clearance line for establishing dimensional compatibility between drum brakes and wheels with 19.5-inch, 22.5-inch, and 24.5-inch diameter rims. Wheels designed for use with drum brakes may not be suitable for disc brake applications. The lines provided establish the maximum envelope for brakes, including all clearances, and minimum envelope for complete wheels to allow for interchangeability. This document addresses the dimensional characteristics only and makes no reference to the performance, operational dynamic deflections, or heat dissipation of the system. Valve clearances have not been included in the fitment lines. Bent valves may be required to clear brake drums. Disc brake applications may require additional running clearances beyond those provided by the minimum contour lines. Mounting systems as noted are referenced in SAE J694.
Truck and Bus Wheel Committee
This SAE Information Report is provided as an advisory guide and is not intended to be made a procurement requirement. Individual application discretion is recommended. The content has been presented as accurately as possible, but responsibility for its application lies with the user. The document covers a number of the variables in the torque-tension relationship: friction, materials, temperature, humidity, fastener and mating part finishes, surfaces, and the kind of tightening tools or equipment used. With an understanding of the variables to be considered, several methods to determine and tighten fasteners using the torque-tension relationship are identified. This guide is limited in application to fasteners with ISO-metric or UN series threads. Other thread types, such as self-tapping or thread forming, may apply to some aspects of this standard but are not specifically covered. The procedures described in this document are based on general factors for the determination of the
Fasteners Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Recommended Practice is applicable to all liquid-to-air, liquid-to-liquid, air-to-liquid, and air-to-air heat exchangers used in vehicle and industrial cooling systems.
Cooling Systems Standards Committee
This SAE Aerospace Recommended Practice (ARP) describes training and approval of personnel performing certain thermal processing and associated operations that could have a material impact on the properties of materials being processed. It also recommends that only approved personnel perform or monitor the functions listed in Table 1.
AMS B Finishes Processes and Fluids Committee
This SAE Recommended Practice provides DA metrics used to quantify the DDT performance of ADS-operated vehicles.3 Here, the primary focus is on the safety-related DDT performance and includes definitions, taxonomy, characteristics, and usage (along with alternatives) for each metric. DDT performance is a subset of overall operational performance of ADS-operated vehicles. Thus, assessments of DDT Fallback [1], cybersecurity, maintenance, interactions with passengers, etc., while important and could have an indirect impact on the DDT, are out of scope for this document. Note that the DA metrics do not specify the actions and/or maneuvers to be executed by the (ADS-operated) subject vehicle (SV). While this document presents a set of individual DA metrics, it is important to note that it is out of the scope of this document to describe how these metrics should be applied in practice. This is because the overall context of the scenario or deployment must be considered during DA metrics
On-Road Automated Driving (ORAD) Committee
This SAE Aerospace Recommended Practice (ARP) contains methods used to measure the optical performance of airborne electronic flat panel display (FPD) systems. The methods described are specific to the direct view, liquid crystal matrix (x-y addressable) display technology used on aircraft flight decks. The focus of this document is on active matrix, liquid crystal displays (LCD). The majority of the procedures can be applied to other display technologies, however, it is cautioned that some techniques need to be tailored to different display technologies. The document covers monochrome and color LCD operation in the transmissive mode within the visual spectrum (the wavelength range of 380 to 780 nm). These procedures are adaptable to reflective and transflective displays paying special attention to the source illumination geometry. Photometric and colorimetric measurement procedures for airborne direct view CRT (cathode ray tube) displays are found in ARP1782. Optical measurement
A-20A Crew Station Lighting
This SAE Standard covers low voltage battery cable intended for use at a nominal system voltage of 60 VDC (25 VAC) or less in surface vehicle electrical systems. The tests are intended to qualify cables for normal applications with limited exposure to fluids and physical abuse.
Cable Standards Committee
This SAE Recommended Practice establishes the procedure for determining if recreational motorboats have effective exhaust muffling means when operating in the stationary mode. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Marine Technical Steering Committee
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Standard (AS) defines a series of standardized tube walls to be used for high pressure hydraulic tubing. These tube walls are applicable to all homogenous tube materials (i.e., aluminum, steel, titanium) throughout a rated pressure range of 1000 to 8000 psi and a maximum rated operating temperature range of 160 to 450 °F. All future aerospace applications for which a required tube outside diameter/tube wall combination is not presently available shall be selected from the table contained herein (see Figure 1).
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers a dilute aluminum/TiB2 metal matrix composite in the form of sand castings.
AMS D Nonferrous Alloys Committee
This specification covers a titanium alloy in the form of bars, wire, forgings up to 4.000 inches (101.60 mm), inclusive, and forging stock.
AMS G Titanium and Refractory Metals Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
This SAE Aerospace Recommended Practice (ARP) provides criteria for design and location of power supplies, controls, light fixtures, and associated equipment which are used to provide emergency illumination in transport aircraft, designed to comply with 14 CFR Part 25 (see Reference 1) for operation under 14 CFR Part 91 (see Reference 11) and 14 CFR Part 121 (see Reference 2), and also in compliance with FAA Advisory Circulars AC 25.812-1A (see Reference 3) and AC 25.812-2 (see Reference 10). It is not the purpose of an ARP to specify design methods to be followed in the accomplishment of the stated objectives.
A-20C Interior Lighting
This standard covers the requirements for non-separable, airframe antifriction needle bearings and corrosion-resistant and traditional materials intended for use in flight vehicle control systems with radial loads.
ACBG Rolling Element Bearing Committee
Counterfeiting of refrigerants has seen a dramatic rise over the past decades. This rise can be partially attributed to global restrictions placed on production and use of refrigerants by the 1987 Montreal Protocol, the 1997 Kyoto Protocol, and the 2016 Kigali Amendment to the Montreal Protocol [1, 2]. These protocols and the amendment regulate the gradual phase-out and strict regulations on the use of refrigerants with high Ozone Depletion Potential (ODP) and high Global Warming Potential (GWP). These protocols require that older refrigerants be replaced with more environmentally friendly products and necessitate redesigned, updated, or replaced equipment to operate efficiently with these new refrigerants.
G-21R Counterfeit Refrigerants
This test method described in this document covers a procedure to speciate that is, to determine the amounts of each different fuel constituent that permeates across sheets, films or slabs of plastic materials. One side of the sheet is meant to be in contact with either a liquid test fuel or a saturated test fuel vapor, the other side is meant to be exposed to an environment free of fuel. The test fuel can either be a mixture of a small (usually smaller than ten) number of hydrocarbon, alcohol and ether constituents or it can be a sample of a real automotive fuel, e.g., one that may contain hundreds of different constituents. Furthermore, Appendix A contains guidelines to speciate evaporative emissions from finished fuel system components such as fuel lines, fuel filler pipes, fuel sender units, connectors and valves.
Fuel Systems Standards Committee
This practice describes recommended performance requirements of fuel tank closures used in conjunction with fuel level senders and fuel delivery systems. It provides guidelines that assure interchangeability and compatibility between fuel tanks and fuel pump/sender closure systems without specifying a specific closure system design. These systems may be used in rigid fuel tank systems made of plastic or metal. Complete details of specific designs shall be established by mutual agreement between customer and supplier. The dimensions and performance requirements are selected to optimize a The closure system, durability and reliability with respect to — Vehicle SHED measurements — Fuel system / crash integrity — LEV – II useful life b Assembly and service ease and reliability c Packaging of fuel tanks and their sending units d Interchangeability of sender closures between various fuel tank designs
Fuel Systems Standards Committee
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Fuel Systems Standards Committee
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
Fuel Systems Standards Committee
This SAE Recommended Practice applies to determining worst-case fuel or test fluid surrogate, conditioning test specimens in worst-case fuel(s)/surrogate(s) prior to testing, individual tests for properties of polymeric materials exposed to oxygenate fuel/surrogate mixtures with additives. The determination of equilibrium, as well as typical calculations are also covered.
Fuel Systems Standards Committee
This SAE Standard includes performance requirements for protective covers for flexible, non-metallic fuel tubing. Ultimate performance of the protective cover may be dependent on the interaction of the fuel tubing and protective cover. Therefore, it is recommended that tubing and cover combinations be tested as an assembly, where appropriate, to qualify to this document.
Fuel Systems Standards Committee
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
Fuel Systems Standards Committee
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls, as well as through “microleaks” at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation, where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
Fuel Systems Standards Committee
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid. One of the plugs has a small fill hole with a gasketing system that
Fuel Systems Standards Committee
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Fuel Systems Standards Committee
Items per page:
1 – 50 of 212754