Your Selections

Coatings, colorants, and finishes
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Computerized Experimental Investigation on Performance & Exhaust Emission of Twin Cylinder Adiabatic Diesel Engine coated with YSZ

SVMIT Bharuch-Dr. Dipakkumar C. Gosai
SVNIT Surat-Anil Kumar Gillawat
  • Technical Paper
  • 2019-28-2548
To be published on 2019-11-21 by SAE International in United States
The fuel consumption and performance of the Internal Combustion engine is improved by adopting concepts of an adiabatic engine. An experimental investigation for different load conditions is carried out on a water-cooled, constant-speed, twin-cylinder diesel engine. This research is intended to emphasize energy balance and emission characteristic for standard uncoated base engine and adiabatic engine. The inner walls of diesel engine combustion chamber are thermally insulated by a top coat of Metco 204NS yttria-stabilized zirconia (Y2O3ZrO2) powder (YSZ) of a thickness of 350 mm using plasma spray coating technology. The same combustion chamber is also coated with TBC bond coats of AMDRY 962 Nickle chromium aluminum yttria of thickness of 150 mm. The NiCrAlY powder specially designed to produce coating’s resistance to hot corrosion. The combination of this ceramic material produces excellent high-temperature thermal barrier coating (TBC) resistant to thermal cycling stresses and strains. The engine valves, engine heads, and engine pistons were thermal barrier ceramic coated and computerized experimental results were compared to the base engine. Experimental results justified TBC engine to give a…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

High Durable PU Metallic Monocoat system for tractor sheet metal application.

Mahindra & Mahindra, Ltd.-Rahul Lalwani, Sudhir Sawant, Yogesh keskar, Nitin Pagar
Mahindra Research Valley-Vinay Kumar
  • Technical Paper
  • 2019-28-2541
To be published on 2019-11-21 by SAE International in United States
In sheet metal painting for various applications like Tractor, Automobile, most attractive coating is metallic paints and it is widely applied using 3 coats 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production throughput time & lower productivity in manufacturing process. During various brainstorming & sustainable initiatives, paint application process was identified for alternative thinking to reduce burden on environment & save energy. Various other industry benchmarking & field performance requirement studies helped us identify the critical to quality parameters. We worked jointly with supplier to develop mono-coat system without compromising the performance & aesthetical properties. This results in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving. Metallic mono-coat formulated using strong polyurethane resins & latest technology pre-coated aluminum pigment for achieving metallic effect in finish. With new resin technology further, reduction of baking temperature is possible & reduce further energy consumption. The proposed technology is fully validated on component and ready. Proposed…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Photo oxidation analysis method for automotive coating weathering performance evaluation

Mahindra Engineering-Rahul Lalwani
Mahindra Research Valley-Divya Pande, B Jayanthan, Vinay Kumar
  • Technical Paper
  • 2019-28-2555
To be published on 2019-11-21 by SAE International in United States
RESEARCH OBJECTIVE Accelerated artificial weathering performance has been always observed as critical and most important factor for durability prediction of colour and resin for a coating system. Photo oxidation of resin is the phenomenon behind coating’s ageing. Though accelerated weathering tests protocols are widely used in industry, they are very costly and still very time consuming. One automotive grade accelerated testing can go as long as 8 months duration. METHODOLOGY (maximum 150 words) Photo oxidation value (POV) is proportionate to the degradation of the resin material used in coating. During the accelerated weathering POV is measured for the coating at stipulated interval during initial phase and trend is plotted for deterioration verses weathering test duration. POV can be analysed with the help of FTIR analysis to observe bond absorption energy and bond separation energy in the resin system. This trend can be extrapolated to predict the weathering performance of coating. This method can save huge time in predicting the weathering performance and decision making. RESULTS (maximum 150 words) Photo oxidation degradation study was performed on…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Wheel and Wheel Trim Weathering Testing for Paint Coatings

Wheel Standards Committee
  • Ground Vehicle Standard
  • J2633_201910
  • Current
Published 2019-10-21 by SAE International in United States
This SAE lab test procedure should be used when performing the following specialized weathering tests for wheels; Florida Exposure, QUV, Xenon and Carbon Weatherometer. In addition to these procedures, some additional post-weathering tests may be specified. Please refer to customer specifications for these requirements.
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Primer, Anodic Electrodeposition for Aircraft Applications

AMS G8 Aerospace Organic Coatings Committee
  • Aerospace Material Specification
  • AMS3144A
  • Current
Published 2019-10-17 by SAE International in United States

This specification establishes the requirements for a waterborne, corrosion inhibiting, chemical and solvent resistant, anodic electrodeposition epoxy primer capable of curing at 200 to 210 °F (93 to 99 °C).

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Corrosion and Corrosive Wear of Steel for Automotive Exhaust Application

Crescent Institute of Science and Technology-Tiruvannamalai Rajendra Prasad Tamilarasan
SRM Institute of Science and Technology-Raj Rajendran
Published 2019-10-11 by SAE International in United States
In the current scenario, durable exhaust system design, development and manufacturing are mandatory for the vehicle to be competitive and challenging in the automotive market. Material selection for the exhaust system plays a major role due to the increased warranty requirements and regulatory compliances. The materials used in the automotive exhaust application are cast iron, stainless steel, mild steel. The materials of the exhaust systems should be heat resistant, wear and corrosion resistant. Stainless steel is the most commonly used material in the automotive exhaust system. Due to increasing cost of nickel and some other alloying elements, there is a need to replace the stainless steel with EN 8 steel. Recent trends are towards light weight concepts, cost reduction and better performance. In order to reduce the cost and to achieve better wear and corrosion resistance, the surface of the EN 8 steel is modified with coatings. This work focuses on the evaluation of corrosion and corrosive wear resistance of hard chrome plating (HCP), hot dip aluminized coatings (HDA), spray aluminized coatings (SA), electroless nickel…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Improvement of Mechanical Properties, and Optimization of Process Parameters of AISI 1050 Spheriodized Annealed Steel by Ranking Algorithm

SRM Institute of Science and Technology-Durai Kumaran, Sundar Singh Sivam Sundarlingam Paramasivam, Krishnaswamy Saravanan, Raj Rajendran
Tishk International University-Ganesh Babu Loganathan
Published 2019-10-11 by SAE International in United States
AISI 1050 is used in the production of landing gear, actuators and other aerospace components but their application is limited due to machinability of the material. In any metal cutting operation the features of tools, input work materials, machine parameter settings will influence the process efficiency and output quality characteristics. A significant improvement in process efficiency may be obtained by process parameter optimization that identifies and determines the regions of critical process control factors leading to desired outputs or responses with acceptable variations ensuring a lower cost of manufacturing. This experimental study elucidates the problems and machinability issues like failure of tools and accuracy are found while machining and less output in machining. In the present study of spherodizing heat treatment of AISI 1050 was investigated during the turning operation in CNC lathe, under the consideration of several turning process parameters. The microstructures of the as-received, and heated specimens were investigated by Optical Microscopy (OM). A correlation between various process parameters on the desired response namely surface finish, roundness Material Removal Rate (MRR), power consumption…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Metallurgical and Wear Behaviour of Stellite 6 Reinforced Stainless Steel 316 Joints by Nd-YAG Laser Welding Process

BSACIST-Varun Kumar Arulvizhi, Selvakumar Alandur Somasundaram, Balasrinivasan Murugan, Ravikumar Natarajan
Renault & Nissan-Abdur Rahman Kalam
Published 2019-10-11 by SAE International in United States
Laser welding process is a most effective and predominant method for joining of steel alloys when compared with other welding processes in practice due to their precise control of laser source across the bonding zone where it is crucial to control in other joining processes. In common the austenitic steels differ from ferritic based on two factors, thermal conductivity and expansion. Here, the selected Nd-YAG laser setup for joining of similar base material stainless steel 316 which is reinforced with and without stellite 6 powders. The experimental investigations (metallurgical survey and wear characteristics) were performed on all the samples. The powders were reinforced in the material directly by performing a drill across the bond line instead of a normal coating process which is in practice, later the powders were stuffed through the holes. Totally four samples were processed by varying the process parameters such as laser power (W), laser frequency (Hz) and keeping the time (s), feeding rate (mm/s) as constant. During the joining process the powders will get solidified with the molten steel alloy.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Investigation of Thermal Shock Resistance of CeO2 Coating on Titanium Alloy by Magnetron Sputtering

AAA College of Engineering & Techology-Balamurugan Subburaj
Mepco Schlenk Engineering College-Bala Manikandan Cheirmakani, Balamurugan Pandian, Lionel Beneston
Published 2019-10-11 by SAE International in United States
Titanium alloy (Grade V) is used in aerospace, medical, marine and chemical processing industries. To improve the thermal shock resistance and corrosion resistance of the titanium alloy at elevated temperatures, Thermal barrier coating (TBC) has been predominantly used. Cerium oxides (CeO2) have been proposed as TBC, due to their high thermal expansion coefficient, higher thermal shock resistance and low corrosion rate. In this study, CeO2 was coated on Titanium alloy by magnetron sputtering. Deposition time was varied as 30 mins, 60 mins and 90 mins respectively, to achieve the variation in thickness of coating. Thickness of the coated specimen was measured by atomic force microscopy and found to be 500 nm, 120 nm and 80 nm respectively. Surface roughness of the corresponding coated surfaces is 152.28 nm, 18.41 nm and 18.65 nm. The Vickers hardness was found to increase with decrease in coating thickness upto certain extent then decreases. Corrosion ability of the coated specimen was identified by electrochemical corrosion test. The coating with lower concentration of particles has the best corrosion properties. Thermal shock…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Graphite Coating, Thin Lubricating Film, Impingement Applied

AMS B Finishes Processes and Fluids Committee
  • Aerospace Material Specification
  • AMS2525E
  • Current
Published 2019-10-10 by SAE International in United States

This specification covers a coating consisting of finely-powdered graphite in a heat-resistant inorganic binder.