Your Selections

Air pollution
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Aircraft Plenum Air Outlet Optimization Method

Embraer-Fernando Stancato
  • Technical Paper
  • 2020-01-0021
To be published on 2020-03-10 by SAE International in United States
It is possible to observe a growing interest by mobility industry toward a increased passenger comfort perception. This tendency is being characterized in the aviation sector by interior project that would guarantee the passenger comfort in entertainment, ergonomics, lightning, air quality, acoustics and thermal environment. Regarding this last three aspects, the air distribution through the plenum has a great impact on them. In this work it is presented a method to select the best outlet orifice configuration. The method was applied on seven different plenums. Acoustic evaluation was done using a rig experiment. Based on noise levels of each configuration, the dominant frequency range is identified. Objectives metrics, such as overall levels, speech interference level (SIL3) and loudness were applied. Subsequently, subjective analysis was conducted using the paired comparison method. Finally, an acoustic performance classification was established. Draft effect and air temperature distribution inside the cabin was done using CFD simulation. Besides that, a one-dimensional duct model was done for each configuration to evaluate plenum velocity and pressure distribution. Through these models, it was possible…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Issues Concerning the Use of Fuel Cells in Electric Ground Vehicles

H2SG Energy Pte Ltd.-Bart Kolodziejczyk
  • Research Report
  • EPR2020002
To be published on 2020-02-27 by SAE International in United States
Lately, the idea of using hydrogen in automotive applications is gaining significant momentum. However, the concept of using clean hydrogen fuel generated from water via electrolysis is nothing new. Because of numerous challenges, previously hydrogen has never managed to become a mainstream industrial or automotive fuel. A decade ago, an attempt to introduce hydrogen for mobility failed miserably and for good reasons. Back then, the fuelcell technology, which efficiently converts hydrogen and atmospheric oxygen into electricity, was not as advanced as it is today. In addition, the fuel cell prototypes were bulky and expensive. After the first failed wave of hydrogen-based economy implementation followed by another ten years of development, hydrogen is back, and it seems that this time it is here to stay. The decade of research allowed for improvements in materials, components, and performance of entire fuel cell systems. In addition, new manufacturing tools and techniques have been developed to reduce system costs. Today’s fuel cell systems use a fraction of platinum catalysts compared to fuel cells ten years ago, yet their performance…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Heavy Duty Diesel Emission Standards Regulation Evolution Review - Current Outcomes and Future Perspectives

FCB Research and Consulting-Fábio Coelho Barbosa
  • Technical Paper
  • 2019-36-0174
Published 2020-01-13 by SAE International in United States
Heavy duty vehicle (HDV) segment, as an important source of emissions that strongly impact air quality and human health - especially in urban centers - has been continuously challenged by the increasingly stringent emission limits. The adoption of emission standards for the heavy duty industry was initially launched by the United States, followed by the European Union and Japan, and, subsequently, by other countries, like Australia, Brazil, China and India, among others, generally with a time lag. This continuous “cleaning” effort has led to the current rigorous emission limits - materialized by the so called U.S. EPA 2010 and Euro VI and their foreign variants - which have provided huge emissions reductions (HC, CO, NOx, PM and smoke and, more recently, CO2). Nevertheless, due to air quality and global climate change concerns (basically derived from the air quality non compliance, associated with cities' pollution hotspots, as well as greenhouse gas emissions) there is still a regulatory demand for further emissions control improvement. In this scenario, the heavy duty vehicle industry has pursued not only increasingly…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Exhaust Emission Analysis of a Spark Ignition Engine Operating with Hydrogen Injection in a Pre-Combustion Chamber

Centro Federal de Educação Tecnológica de Minas Gerais-Fausto Torres Magalhães Avelar
Universidade Federal de Minas Gerais-Vinícius Faria Duarte, Carlos Eduardo Castilla Alvarez, Marcelo Augusto Maia Pires, Nathália Duarte Souza Alvarenga Santos, Ramon Molina Valle, Vinícius Rückert Roso
  • Technical Paper
  • 2019-36-0121
Published 2020-01-13 by SAE International in United States
Due to the large negative impact of combustion gas emissions on air quality and the more stringent environmental legislation, research on internal combustion engines (ICE) are being developed to reduce emissions of pollutant gases to the atmosphere. One of the research fronts is the use of lean mixtures with the pre-chamber ignition system (PCIS). This system consists of a pre-chamber (PC) connected to the main chamber by one or more interconnecting holes. A spark plug initiates combustion of the mixture present in the pre-chamber, which is propagated as gas jet into the main chamber, igniting the lean mixture present therein. The gas jets have high thermal and kinetic energy, which promote faster combustion duration, making the system less prone to knock and with lower cyclic variability of the IMEP, enabling the lean limit extension. The pre-chamber system can be assisted with a supplementary liquid or gaseous fuel injection, enabling the charge stratification. In this context, this paper aims to evaluate the reduction in exhaust emissions from an ICE adapted with a stratified PCIS operating with…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Research of Fuel Components to Enhance Engine Thermal Efficiency Part II: Consideration of Engine Combustion Characteristics

JXTG Nippon Oil & Energy Corporation-Ken Obata, Taketora Naiki, Manabu Watanabe
Toyota Motor Corporation-Nozomi Yokoo, Yoshinori Miyamoto, Koichi Nakata
  • Technical Paper
  • 2019-01-2256
Published 2019-12-19 by SAE International in United States
To correspond to the social requirements such as climate change, air pollution, and energy security, enhancing the engine thermal efficiency is strongly required in these days. As for the specific engine technologies to improve the engine thermal efficiency, Atkinson cycle, cooled EGR (Exhaust Gas Recirculation), and low friction technologies have been developed [1–4]. In regard to combustion technology, lean boosted concept has a potential to reduce CO2 emission because lean boosted concept is expected to enhance the engine thermal efficiency. Although expanding lean combustion limit is important for both increasing the engine thermal efficiency and reducing NOx emission, there is a limitation to realize stable lean combustion with SI (Spark Ignition) gasoline engine. In this study, fuel effects on the combustion characteristics from the viewpoint of chemical reaction capability are focused on. In consequence, it is demonstrated that the some molecules with high laminar burning velocity expand the lean combustion limit and enhance the engine thermal efficiency. In other words, those candidate molecules show the potential to realize compatible characteristics both lean combustion stability and…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Study for Effects of Bio-Diesel Fuel and After-Treatment Systems on Formation and Reduction of Particles from Diesel Engines

TOKYO DYLEC Corp., and Pollars Laboratory Co., Ltd.-Jun Kawase, Ryuichi Suzuki
Teikyo University-Kazutoshi Mori
  • Technical Paper
  • 2019-01-2290
Published 2019-12-19 by SAE International in United States
Diesel engines are highly potential for better fuel economy due to a high thermal efficiency and fuel diversity. They are largely expected to contribute to a low carbon society in the future. Diesel engines have been developed for the purpose of controlling global warming and improving the air quality and health effects in the world. Although particles produced by combustion in cylinders of the diesel engines are emitted to the air, they are dramatically reduced by beyond 99.9% after being trapped by a diesel particulate filter (DPF) and a diesel oxidation catalyst (DOC) of the after-treatment systems. However phenomena of the formation of the particles in the cylinders and exhaust behaviors of the particles after being trapped by the DPF are not clearly explained yet (1)-(6) and effects of the DOC on the formation and the reduction of the particles are still not clarified (7)(8). This study analyzed particle distributions, particle number (PN) and particle components with diesel and bio-diesel fuel (BDF). First, this paper describes that the BDF more reduced the engine out PN…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Effects of Exhaust Gas Hydrogen Addition and Oxygenated Fuel Blends on the Light-Off Performance of a Three-Way Catalyst

University College London-Viktor Kärcher, Paul Hellier, Nicos Ladommatos
  • Technical Paper
  • 2019-01-2329
Published 2019-12-19 by SAE International in United States
A significant amount of harmful emissions pass unreacted through catalytic after-treatment devices for IC engines before the light-off temperature is reached, despite the high conversion efficiency of these systems in fully warm conditions. Further tightening of fleet targets and worldwide emission regulations will make a faster catalyst light-off to meet legislated standards hence reduce the impact of road transport on air quality even more critical.This work investigates the effect of adding hydrogen (H2) at levels up to 2500 ppm into the exhaust gases produced by combustion of various oxygenated C2-, C4- and renewable fuel molecules blended at 20 % wt/wt with gasoline on the light-off performance of a commercially available three-way catalyst (TWC) (0.61 L, Pd/Rh/Pt - 19/5/1, 15g). The study was conducted on a modified naturally aspirated, 1.4 L, four-cylinder, direct-injected, spark-ignition engine. The experiments were performed at the steady-state condition of 1600 r/min and BMEP of 3.6 bar, derived from a time-based load distribution of a WLTC cycle simulation, with levels of gaseous pollutants, particulate matter and hydrogen measured both upstream and downstream…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Emission Reduction of a Diesel Engine Fueled with Blends of Biofuel under the Influence of 1,4-Dioxane and Rice Husk Nano Particle

Delphi TVS-Santiago Josan
Madras Institute of Technology-Mebin Samuel P, Devaradjane G
  • Technical Paper
  • 2019-28-2387
Published 2019-11-21 by SAE International in United States
In this modern era increase in pollution became a huge impact on the lives of all living creatures, in this automobile tends to be one of the major contributors in terms of air pollution thanks to their exhaust emissions. The objective of the present study is to reduce the amount of harmful pollutants emitted from the automobiles by the utilization of a biofuel further influenced by two additives (liquid and a Nano additive). In this study, first the bio oil is extracted, then the biofuel is mixed with diesel fuel at different proportions of 20%, 40% by volume. Experiments are carried out in a common rail direct injection, diesel engine, which is a stationary test engine manufactured by Kirloskar, connected to a computer setup with an open control unit. The emission values in the exhaust gases are obtained using AVL exhaust gas analyzer. Then 0.1% of rice husk Nano additive addition with the fuel blend followed by 3%, 6% of 1, 4-Dioxane blended with the previous blend and its performance (BTE, BSFC) and emission (HC,…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Study on Combined Effect of Yttria Stabilized Zirconia Coated Combustion Chamber Components and Emulsification Approach on the Behaviour of a Compression Ignition Engine Fuelled with Waste Cooking Oil Methyl Esters

Hindustan Institute of Tech. & Science-Sangeethkumar Elumalai, Jaikumar Mayakrishnan, Sasikumar Nandagopal, Selvakumar Raja, Ramanathan Velmurugan
Published 2019-10-11 by SAE International in United States
Waste Cooking Oil (WCO) is generated in large quantity worldwide due to the increase in population and change of food habits. This work is about utilizing this WCO as an alternative fuel for Compression Ignition (CI) engine, in view of addressing the constraints in the domain of land as well as air pollution. A fuel and engine level modification were carried out to analyse the behaviour of the test engine. In the first phase of the study, collected WCO was converted into its methyl esters (i.e. WCOME) and tested for its properties. A single cylinder, water cooled, direct injection, compression ignition engine was developed with suitable emission and combustion parameters computing equipments in the second phase of the work. In the third phase of the work, the developed engine was tested with neat diesel, WCO and WCOME under different engine power outputs.WCOME was converted into its emulsion (WCOMEE) and tested in the developed engine in the fourth phase of the work. In the fifth phase of the study, combustion chamber components like piston, cylinder head…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Testing of Electric Microcar for Indian Cities

VNR VJIET-Amjad Shaik, Srinivasa Rao Talluri, Raju Tappa, Ramu Ratlavath
Published 2019-10-11 by SAE International in United States
Population growth, rapid urbanisation and compounding effects of adding personal vehicles have resulted in increasing the urban air pollution in major Indian cities. Apart from the rising concerns about the urban air pollution, the increasing traffic and lack of parking space difficulties are promoting energy efficient small vehicles. Hence, there is a need to develop a new environmental friendly microcar that relatively affordable and easily manoeuvrable in bigger cities. Electric microcar is one of the most promising options to improve the near term sustainability for personal transportation in cities. This paper mainly presents the development of two seater electric microcar suitable for city driving requirements followed by road test. A mathematical modelling with reference to the urban cycle (Part-one) of modified Indian driving cycle (MIDC) is also carried out for the evaluation of energy and power requirements of electric microcar. The developed electric microcar has been tested on road with the help of the MIDC simulator kit. Results revealed that the developed prototype has demonstrated about 50 km range after one full charge.
This content contains downloadable datasets
Annotation ability available