Search
Advanced Search
of the following are true
(
)

Results

Items (212,075)
This specification covers two methods for determining the percentage of delta ferrite in steels and other iron alloys. When applicable, this specification will be invoked by the material specification.
AMS F Corrosion and Heat Resistant Alloys Committee
This standard establishes the design requirements for a fiber optic serial interconnect protocol, topology, and media. The application target for this standard is the interconnection of multiple aerospace sensors, processing resources, bulk storage resources and communications resources onboard aerospace platforms. The standard is for subsystem interconnection, as opposed to intra-backplane connection.
AS-1A Avionic Networks Committee
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
AS-1A Avionic Networks Committee
This SAE Information Report establishes a point system that encourages ease of maintenance actions on off-road machines. The point system minimizes subjectivity in evaluating maintainability as defined in ISO 8927.
Machine Technical Steering Committee
This specification defines the procedures and requirements for joining metals and alloys using the electron-beam welding process.
AMS B Finishes Processes and Fluids Committee
This SAE Standard provides test procedures, performance requirements, and guidelines for semiautomatic headlamp beam switching devices.
Road Illumination Devices Standards Committee
The scope of this SAE Recommended Practice is to establish recommended uniform test procedures and minimum static load requirements for vehicle passenger door hinge systems. Tests are described that can be conducted on test fixtures and equipment in laboratory test facilities. The test procedures and minimum performance requirements outlined in this document are based on currently available engineering data. It is intended that all portions of the document be periodically reviewed and revised as additional knowledge regarding vehicle hinge system performance under impact conditions is developed.
Motor Vehicle Council
This SAE Standard provides test procedures and performance requirements for off-highway vehicle headlamps.
Special Purpose Vehicle Committee
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements specifically for road illumination devices using light emitting diode (LED) sources.
Road Illumination Devices Standards Committee
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This document defines a set of standard application layer interfaces called JAUS Manipulator Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Manipulator Services represent platform-independent capabilities commonly found across domains and types of unmanned systems. At present, twenty-five (25) services are defined in this document. These services are categorized as: Low Level Manipulator Control Services – The one service in this category allows for low-level command of the manipulator joint actuation efforts. This is an open-loop command that could be used in a simple tele-operation scenario. The service in this category is listed as follows: Primitive Manipulator Service Manipulator Sensor Services – These services, when queried, return instantaneous sensor data. Three services are defined that return respectively joint positions, joint velocities, and joint
AS-4JAUS Joint Architecture for Unmanned Systems Committee
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Fuel Systems Standards Committee
This SAE Aerospace Standard (AS) establishes the minimum requirements for ground-based aircraft deicing/anti-icing methods and procedures to ensure the safe operation of aircraft during icing conditions on the ground. This document does not specify the requirements for particular aircraft models. The application of the procedures specified in this document are intended to effectively remove and/or prevent the accumulation of frost, snow, slush, or ice contamination which can seriously affect the aerodynamic performance and/or the controllability of an aircraft. The principal method of treatment employed is the use of fluids qualified to AMS1424 (Type I fluid) and AMS1428 (Type II, III, and IV fluids). All guidelines referred to herein are applicable only in conjunction with the applicable documents. Due to aerodynamic and other concerns, the application of deicing/anti-icing fluids shall be carried out in compliance with engine and aircraft manufacturer’s recommendations.
G-12M Methods Committee
The application of electric power for aircraft propulsion can take a variety of forms, ranging from partial electric to full electric. The introduction of electric engines to drive propulsors, along with the variety of available methods to generate electricity and store energy offers great degree of new design freedom for next-generation aircraft and aircraft architectures. This newfound design freedom exposes a need within the aviation industry to establish a common design language for electrified propulsion. While this need for a common design language is recognized, the intent of this document is to encourage innovation, providing reference architectures as a launching point for future work in this area. This document will describe potential electrified propulsion architectures and provide examples. While providing these example architectures, this document will develop common definitions for the elements of the architectures by defining: 1 The elements of electrified propulsion
E-40 Electrified Propulsion Committee
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of an equipment mount device or system when exposed to a frontal or side impact (i.e., a crash impact). Its purpose is to provide equipment manufacturers, ambulance builders, and end users with testing procedures and, where appropriate, acceptance criteria that, to a great extent, ensure equipment mount devices or systems meet the same performance criteria across the industry. Prospective equipment mount manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test setup, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
Truck Crashworthiness Committee
This SAE Recommended Practice establishes a uniform fluid specification for reference usage in specific documents, such as fluid power component test procedures, where a fluid designation is required.
CTTC C1, Hydraulic Systems
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber-optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This standard specifies a method for testing and measuring the deflection of friction materials assemblies and compressibility of friction materials. This standard applies to disc brake pad assemblies and its coupons or segments, brake shoe lining and its coupons or segments, and brake blocks segments used in road vehicles. This SAE test method is consistent in intent with the ISO 6310 and the JIS 4413.
Brake Linings Standards Committee
This SAE Standard specifies a method for testing and measuring elastic constants in friction materials by precise ultrasonic velocity measurements. Measurement methods are also described for measurement of the out-of-plane modulus as a function of pre-load as well as the measurement of engineering constants as a function of temperature. Finally, methods are formulated to produce all engineering constants as a function of pre-load and temperature.
Brake Linings Standards Committee
This SAE Recommended Practice is derived from common methods used within the industry and is not intended to validate a given design or configuration. This SAE Recommended Practice applies to vehicles below 4540 kg of gross vehicle weight rating.
Brake NVH Standards Committee
This IR defines a general taxonomy (classification) of the most common fixture designs. This IR provides guidelines for design, fabrication, and installation to improve the way tests repeat, reproduce, and correlate to vehicle conditions. The different types of fixtures in this IR (including their preloading) apply to single-ended brake inertia dynamometer NVH testing, with a frequency range between 1.25 kHz and 16 kHz (per SAE J2521). This IR applies to passenger car and light trucks with a gross vehicle weight rating of 4536 kg or below. This IR does not address other sources of variability such as (a) test procedure itself, (b) environmental conditions, (c) dynamometer design, including its NVH test chamber, (d) data collection and data analysis methods, and (e) part-to-part, batch-to-batch, and design-level variation for brake and suspension hardware.
Brake NVH Standards Committee
This SAE Recommended Practice is intended to establish guidelines for conducting passenger car roll-over tests so that data obtained by various test facilities may be more readily compared. A description is provided of the facilities and procedures for a curved rail-ramp technique, which has been found to be successful in producing roll-overs. Techniques and instrumentation for the study and evaluation of vehicle structure effects and occupant movement resulting from roll-overs produced by the curved rail-ramp system are also specified. The curved rail-ramp procedure has been evolved from laboratory and field studies and tests which have sought to establish procedures which would provide realistic simulations of roll-over accidents without collision, and which would be reproducible among laboratories and between different types of passenger cars. The original issue of SAE J857 described ground level and hill roll-over techniques. However, it was found that these procedures were not
Impact and Rollover Test Procedures Standards Committee
This SAE Recommended Practice defines key terms used in the description and analysis of video based driver eye glance behavior, as well as guidance in the analysis of that data. The information provided in this practiced is intended to provide consistency for terms, definitions, and analysis techniques. This practice is to be used in laboratory, driving simulator, and on-road evaluations of how people drive, with particular emphasis on evaluating Driver Vehicle Interfaces (DVIs; e.g., in-vehicle multimedia systems, controls and displays). In terms of how such data are reduced, this version only concerns manual video-based techniques. However, even in its current form, the practice should be useful for describing the performance of automated sensors (eye trackers) and automated reduction (computer vision).
null, null
This Information Report provides functional definitions and discussions of key terms and concepts for relating the experimental evaluation of driver distraction to real-world crash involvement. Examples of driver distraction and driving performance metrics include those related to vehicle control, object and event detection and response (OEDR), physiological indicators, subjective assessments, or combinations thereof. Examples of real-world crash involvement metrics include the epidemiological effect size measures of risk ratio, rate ratio, and odds ratio. The terms and concepts defined in this document are not intended to contribute to methodologies for assessing the individual metrics within a domain; these are covered in other SAE documents (e.g., SAE J2944) and SAE technical reports. For any measure chosen in one domain or the other, the goal is to give general definitions of key terms and concepts that relate metrics in one domain to those in the other. Issues of repeatability and
Driver Metrics, Performance, Behaviors and States Committee
This document applies to both Original Equipment Manufacturer and aftermarket route-guidance and navigation system functions for passenger vehicles. It establishes two alternative procedures, a static method and an interrupted vision method, for determining which navigation and route guidance functions should be accessible to the driver while the vehicle is in motion. These methods apply only to the presentation of visual information and the use of manual control inputs to accomplish a navigation or route guidance task. The document does not apply to visual monitoring tasks which do not require a manual control input, such as route following. Voice-activated controls or passenger operation of controls are also excluded. There are currently no compelling data that would support the extension of this document to in-vehicle systems other than navigation systems.
Driver Metrics, Performance, Behaviors and States Committee
This procedure is applicable to squeal type noise occurrences for passenger car and light truck type vehicles that are used under conventional operating conditions. For the purposes of this test procedure, squeal is defined as occurring between 900 and 18 000 Hz.
Brake NVH Standards Committee
This recommended practice covers the attachment of bonded anti-noise brake pad shims only. Mechanically attached shims (those without bonding) are not covered by this procedure.
Brake Linings Standards Committee
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
Brake Linings Standards Committee
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. NOTE—This method is not a measure of friction level. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing. NOTE—The hardness of sintered powder metal lining is usually determined with Rockwell superficial hardness equipment. (See ASTM B 347)
Brake Linings Standards Committee
This SAE Recommended Practice describes the test procedure for conducting a rollover test using a dolly fixture designed to laterally trip a vehicle into a roll. Its purpose is to establish a recommended test procedure which will standardize the procedure between different test facilities. A description of the test procedure, test instrumentation, photographic/video coverage, and the rollover fixture is included.
Impact and Rollover Test Procedures Standards Committee
The purpose of this SAE Recommended Practice is to establish a uniform laboratory procedure for securing and reporting the friction and wear characteristics of brake linings. The performance data obtained can be used for in-plant quality control by brake lining manufacturers and for the quality assessment of incoming shipments by the purchasers of brake linings.
Brake Linings Standards Committee
This SAE Recommended Practice covers equipment capabilities and the test procedure to quantify and qualify the shear strength between the friction material and backing plate or brake shoe for automotive applications. This SAE Recommended Practice is applicable to: bonded drum brake linings; integrally molded disc brake pads; disc brake pads and backing plate assemblies using mechanical retention systems (MRS); coupons from drum brake shoes or disc brake pad assemblies. The test and its results are also useful for short, semi-quantitative verification of the bonding and molding process. This Recommended Practice is applicable during product and process development, product verification and quality control. This Recommended Practice does not replicate or predict actual vehicle performance or part durability.
Brake Linings Standards Committee
Items per page:
1 – 50 of 212075