Your Selections

Parts and Components
Parts
Bearings
Cables
Compressors
Counterfeit parts
Fasteners
Bolts
Nuts
Screws
Washers
Fittings
Gears
Hardware
Mountings
Nozzles
Pumps
Seals and gaskets
Splines
Synchros
Valves
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

Series

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) using Ring-Groove Die Comparing to Heat Treatment Method

Bollhoff Inc.-Xuzhe Zhao
Chang’an University-Dean Meng
  • Technical Paper
  • 2020-01-0222
To be published on 2020-04-14 by SAE International in United States
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry for the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of crack reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting. The SPR joint quality will be evaluated based on interlock distance, the minimum remaining thickness (Tmin), shear strength etc. Instead of using heat treatment method, the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Gear Shift Pattern Optimization for Best Fuel Economy, Performance and Emissions

Chidhanand S.
Mahindra & Mahindra, Ltd.-Lemuel Paulraj, Saravanan Muthiah
  • Technical Paper
  • 2020-01-1280
To be published on 2020-04-14 by SAE International in United States
As the FTP-75 drive cycle does not have a prescribed gear shift pattern, automotive OEMs have the flexibility to design. Conventionally, gear shift pattern was formulated based on trial and error method, typically with 10 to 12 iterations on chassis dynamometer. It was a time consuming (i.e. ~ 3 to 4 months) and expensive process. This approach led to declaring poor fuel economy (FE). A simulation procedure was required to generate a gear shift pattern that gives optimal trade-off amongst conflicting objectives (FE, performance and emissions). As a result, a simulation tool was developed in MATLAB to generate an optimum gear shift pattern. Three different SUV/UV models were used as test vehicles in this study. Chassis dyno testing was conducted, and data was collected using the base and optimized gear shift patterns. Dyno test results with optimized gear shift pattern showed FE improvement of ~ 4 to 5% while retaining the NOx margin well above engineering targets. This labeling FE improvement method did not require any hardware or software changes, thus, involved no additional expense.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Rolling Element Bearings - Advanced Modeling for Multibody Simulations

Ghent University - Soete-Dieter Fauconnier
Siemens DI Software NV-Pavel Jiranek
  • Technical Paper
  • 2020-01-0508
To be published on 2020-04-14 by SAE International in United States
The electrification of vehicles, together with the ever-increasing need for more lightweight and durable designs, is putting the NVH performances of the transmission in the spotlight since the generated noises are not masked by the internal combustion engine. To correctly estimate the performances of the transmission while still in the design-phase, predictive models for the main components of the gearbox are of paramount importance. This paper focuses on the modeling of rolling element bearings, a key component that is responsible of transmitting the vibrations from the gear pairs to the surrounding structure while introducing additional excitation frequencies. The modeling techniques use the relative displacement of the rings to compute the corresponding reaction forces by calculating the equilibrium of each rolling element. To do so, the interaction between the rolling elements and the raceways can be modeled employing two different contact models depending on the level of accuracy required. The contact models are, respectively, a Hertz-Based approach that allows for fast computations, and an EHL (Elasto-Hydrodynamic Lubricated) contact model which accounts for the effects of lubrication.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Bearing Fault Diagnosis of the gearbox using blind source separation

Nanjing University of Science & Technology-Hong Zhong, Jingxing Liu, Liangmo Wang, Yang Ding, Yahui Qian
  • Technical Paper
  • 2020-01-0436
To be published on 2020-04-14 by SAE International in United States
Gearbox fault diagnosis is one of the core research areas in the field of rotating machinery condition monitoring. The signal processing-based bearing fault diagnosis in the gearbox is considered as challenging as the vibration signals collected from acceleration transducers are, in general, a mixture of signals originating from an unknown number of sources, i.e. an underdetermined blind source separation (UBSS) problem. In this study, an effective UBSS-based algorithm solution, that combines empirical mode decomposition (EMD) and kernel independent component analysis (KICA) method, is proposed to address the technical challenge. Firstly, the nonlinear mixture signals are decomposed into a set of intrinsic mode function components (IMFs) by the EMD method, which can be combined with the original observed signals to reconstruct new observed signals. Thus, the original problem can be effectively transformed into an over-determined BSS problem. Then, the whitening process is carried out to convert the over-determined BSS into determined BSS, which can be solved by the KICA method. Finally, the ant lion optimization (ALO) is adopted to further enhance the performance of the EMD-KICA…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Loads Cascading for Full Vehicle Component Design

CAEfatigue, Ltd.-Neil Bishop
Desktop Engineering Ltd.-Andy Woodward
  • Technical Paper
  • 2020-01-0762
To be published on 2020-04-14 by SAE International in United States
Frequency domain methods of analysis are now being used for the evaluation of fatigue for large vehicle systems and these methods offer advantages over equivalent time domain approaches in a number of ways, including analysis efficiency and the usefulness of derived results. One big potential advantage is to be able to do localized sub-component analysis using “cascaded” loads. Such sub-components can be analyzed with refined parameters such as more sophisticated damping. Local parts can also be re-analyzed at a different phase in the design program. This paper will demonstrate the approach and show examples of the method.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Numerical Modeling of Spray Formation under Flash-boiling Conditions

ANSYS Inc-Mingyuan Tao, Long Liang, Yue Wang, Ellen Meeks
  • Technical Paper
  • 2020-01-0328
To be published on 2020-04-14 by SAE International in United States
Flash boiling occurs in sprays when the ambient gas pressure is lower than the saturation pressure of the injected fuel. In the present work, a numerical study was conducted to investigate solid-cone spray behaviors under various flash-boiling conditions. A new spray cone angle correlation that is a function of injection parameters was developed and used for spray initialization at the nozzle exit to capture plume interactions and the global spray shape. The spray-breakup regime control was adjusted to enable catastrophic droplet breakup, characterized by Rayleigh-Taylor (RT) breakup, near the nozzle exit. The model was validated against experimental spray data from five different injectors, including both multi-hole and single-hole injectors, with injection pressure varying from 100 to 200 bar. Different fuels, including iso-octane, n-heptane, n-pentane, ethanol, and n-butanol, were investigated under a wide range of flash-boiling conditions, in which flash boiling was induced by high injected fuel temperature, ranging from 323 to 493 K, and/or low ambient gas pressure, ranging from 0.1 bar to atmospheric. It is found that flash boiling can significantly increase the spray…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

University of Illinois at Urbana-Champaign-Wenying Zhang, Predrag Hrnjak
  • Technical Paper
  • 2020-01-0153
To be published on 2020-04-14 by SAE International in United States
Carbon dioxide (R744) is one of the most promising next-generation refrigerants for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. In this paper, a simulation model of an integrated internal heat exchanger (IHX) and accumulator (ACC) was developed using the finite volume method via EES. The results were validated by experimental results from a transcritical R744 mobile heat pump, and the error was within ±5%. The impacts of mass flow rate, evaporator outlet quality and temperatures of high- and low-side streams on the heat transfer rate, effectiveness and charge of the integrated IHX/Acc were studied. Results show that the heat transfer rate of the IHX is mostly sensitive to the evaporator outlet quality. When the evaporator quality decreases from 0.9 to 0.6, the heat transfer rate increases from 1.1 to 2.4 kW and the superheat reduces from 25.8 to 9.4 ℃. As a result, the compressor discharge temperature and the heating capacity can be reduced. To obtain the maximized capacity, especially during the startup, an…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Stability of Flowing Combustion in Adaptive Cycle Engines

Illinois Institute of Technology-Prashanth Tamilselvam, Francisco Ruiz
  • Technical Paper
  • 2020-01-0296
To be published on 2020-04-14 by SAE International in United States
In an Adaptive Cycle Engine (ACE), thermodynamics favors combustion starting while the compressed, premixed air and fuel are still flowing into the cylinder through the transfer valve. Since the flow velocity is typically high, and is predicted to reach sonic conditions by the time the transfer valve closes, the flame might be subjected to extensive stretch, thus leading to aerodynamic quenching. It is also unclear whether a single spark, or even a succession of sparks, will be sufficient to achieve complete combustion. Given that the first ACE prototype is still being built, this issue is addressed by numerical simulation using the G-equation model, which accounts for the effect of flame stretching, over a 3D domain representing a flat-piston ACE cylinder, both with inward- and outward-opening valves. RNG K-Epsilon turbulence model was used to approximate the highly turbulent flow field. It was found that the flame would suffer local blow-off under most operating conditions, but the blow-off is never complete so that the regions affected are later re-ignited by the remaining parts of the flame, and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Ramped Versus Square Injection Rate Experiments in a Heavy-Duty Diesel Engine

DAF Trucks NV-Bogdan Albrecht
Delphi Technologies-Tony Simpson
  • Technical Paper
  • 2020-01-0300
To be published on 2020-04-14 by SAE International in United States
CO2 regulations on heavy-duty transport are introduced in essentially all markets within the next decade, in most cases in several phases of increasing stringency. To cope with these mandates, developers of engines and related equipment are aiming to break new ground in the fields of combustion, fuel and hardware technologies. In this work, a novel diesel fuel injector, Delphi’s DFI7, is utilized to experimentally investigate and compare the performance of ramped injection rates versus traditional square fueling profiles. The aim is specifically to shift the efficiency and NOx tradeoff to a more favorable position. The design of experiments methodology is used in the tests, along with statistical techniques to analyze the data. Results show that ramped and square rates - after optimization of fueling parameters - produce comparable gross indicated efficiencies. For the highest engine speed tested, ramped profiles attain these efficiency values at considerably lower NOx levels. Particulate matter emissions, on the other hand, are generally lower with the use of square profiles. Heat release analysis further reveals that ignition delays in ramped rate…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Minimizing Disturbance Detection Time in Hydraulic Systems

General Motors LLC-Paul Otanez, Ramadityanand Bhogadi
  • Technical Paper
  • 2020-01-0263
To be published on 2020-04-14 by SAE International in United States
In a hydraulic system, parameter variation, contamination, and/or operating conditions can lead to instabilities in the pressure response. The resultant erratic pressure profile produces reduced performance that can lead to hardware damage. Specifically, in a transmission control system, the inability to track pressure commands can result in various types of slip and disturbances to the driveline. Therefore, it is advantageous to identify such pressure events and take remedial actions. The challenge is to detect the condition in the least amount of time while minimizing false alarms. In this study, cross and auto-correlation techniques are evaluated for the detection of pressure disturbances. The performance of the detectors is measured in terms of speed of detection and robustness to: 1) measurement noise, and 2) disturbance parameter uncertainty (frequency and amplitude). The implications in terms of computations and memory utilization of implementing the detectors in real-time embedded systems are also discussed. Both simulation and hardware examples are presented. The hardware experiment is performed in a hydraulic system with low damping composed of a solenoid and a regulator valve…