Your Selections

Active safety systems
Collision avoidance systems
Collision warning systems
Air traffic control
Crash research
Accident reconstruction
Accident types
Frontal collisions
Jackknife crashes
Rear-end crashes
Rollover accidents
Side impact crashes
Crash prevention
Crash statistics
Child injuries
Fatal injuries
Head injuries
Injury causation
Injury classification
Pedestrian injuries
Event data recorders
Fueling safety
Hazards and emergency operations
Evacuation and escape
Fire detection
Fire fighting
Fire prevention
Hazardous materials
Lightning protection
Rescue operations
On-board systems safety
Pedestrian safety
Protective systems
Occupant protection
Protective equipment
Protective clothing
Protective structures
Operator protective structures
Rollover protective structures
Radiation protection
Restraint systems
Child restraint systems
Passive restraint systems
Airbag systems
Safety belts
Safety regulations and standards
Safety testing and procedures
Anthropometric test devices
Icing and ice detection
Impact tests
Risk assessments
Show Only


File Formats

Content Types










   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Assessment of the Potential of Power to Gas Fuels for Replacement of Fossile Fuels in Switzerland

EMPA-Panayotis Dimopoulos Eggenschwiler, Florian Kiefer, Karin Schröter, Christian Bach
  • Technical Paper
  • 2020-37-0027
To be published on 2020-06-23 by SAE International in United States
In Switzerland, road traffic is responsible for one third of greenhouse gas emissions respectively 40% of the CO2 emissions and therefore accounts for the largest single share of all sectors. These emissions have even increased slightly since 1990 (from 15.5 to 16.2 million tCO2). Private individual road transport achieves a mileage of approximatively 91.0 billion pkm (person-kilometer) and 17.2 billion tkm (tons-kilometer) per year. Therefore, 3.3 billion liters of gasoline and 3.2 billion liters of diesel are used, resulting in 16.2 million tCO2 emissions in total. Thereof, 10.2 million tons of CO2 are emitted by passenger cars and 1.7 million tons by trucks, the two most important means of transport concerning CO2 emissions. The rest is produced by vans, buses, motorcycles, railways and shipping, national air traffic and fuel tourism. The passenger cars are the most relevant application in terms of CO2 emissions with a share of 63% of the road vehicle CO2 emissions. To comply with the 95 g/km target, low CO2 vehicles have to be introduced. In the following, the number of such…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

The In-Depth PHEV Driveline Torsional Vibration Induced Vehicle NVH Response Study by Integrated CAE/Testing Methodology

BAIC Motor Powertrain Co Ltd-Hongzhi Yu, Shouwei lu
BAIC Motor corporation.Ltd.-Qian zhao, Li zhang, Jianning jia, LIE WU, Huimin zhuang, honghui zhao
  • Technical Paper
  • 2020-01-1507
To be published on 2020-06-03 by SAE International in United States
In this paper,an amesim 1-d refined driveline model, including detailed engine, damper, dual clutch, transmission, differential, motor, halfshaft, wheel, body, suspension, powertrain mounting and powertrain rigid body, was built up, off a p2.5 topology phev,to predict torsional vibration induced vehicle NVH response addressing differing driving scenarios,like WOT rampup,parking engine start/stop,ev driving to tipnin(engine start) then to tipout(engine stop).firstly,the torsional vibration modes were predicted,addressing differing transmission gear steps of hev/ev driving mode,and the critical modes could be detected,as such, caveats/measures could be applied to setup the modal alignment chart/warn other engineering section from the very start of vehicle development; secondly,secondly,the holistic operational testing,which defined plenty measurement points including rpm fluctuation at differing location of engine/transmission,spark angle,crank position,injection angle,valve timing,MAP/MAF,etc, partly for later model calibration,partly for extract mandatory excitation input,like cylinder pressure trace/mount and suspension force,and partly for the reference of next optimization stage, was implemented on vehicle chassis dyno in a hemi-anechoic it was merely centered on torsional vibration induced scenarios,the intake system/exhaust system /engine radiation noise contribution was excluded by specific measures,like BAM,etc, during…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Reinforcement of Low-Frequency Sound by Using a Panel Speaker Attached to the Roof Panel of a Passenger Car

Hyundai Motor Company-Munhwan Cho
Korea Advanced Inst of Science & Tech-Ki-Ho Lee, Jeong-Guon Ih
  • Technical Paper
  • 2020-01-1570
To be published on 2020-06-03 by SAE International in United States
The woofer in a car should be large to cover the low frequencies, so it is heavy and needs an ample space to be installed in a passenger car. The geometry of the woofer should conform to the limited available space and layout in general. In many cases, the passengers feel that the low-frequency contents are not satisfactory although the speaker specification covers the low frequencies. In this work, a thin panel is installed between the roof liner and the roof panel, and it is used as the woofer. The vibration field is controlled by many small actuators to create the speaker and baffle zones to avoid the sound distortion due to the modal interaction. The generation of speaker and baffle zones follows the inverse vibro-acoustic rendering technique. In the actual implementation, a thin acrylic plate of 0.53ⅹ0.2 m2 is used as the radiator panel, and the control actuator array is composed of 16 moving-coil actuators. The shape of the desired speaker zone is an ellipse, and the required amplitude of this piston source is…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Rattle Source Characterization Using Matrix Inversion on a Reception Plate

Virtual Vehicle-Eugene Nijman, Bernhard Zeller
Virtual Vehicle Research Center-Josef Girstmair
  • Technical Paper
  • 2020-01-1541
To be published on 2020-06-03 by SAE International in United States
Minimising rattle noises is becoming increasingly important for hybrid and electrical vehicles as masking from the IC engine is missing and in view of the functional requirements of the office-like interiors of next generation automated vehicles. Rattle shall therefore be considered in the design phase of component systems. One hurdle is the modelling of the excitation mechanisms and its experimental validation. In this work we focus on excitation by loose parts having functional clearances such as gear systems or ball sensors in safety belt retractors. These parts are excited by relatively large low frequency displacements such as road-induced movements of the car body or low order rigid body engine vibrations generating multiple impacts with broad band frequency content. Direct measurement of the impact forces is in many cases not possible. An experimental procedure to measure the multi-DOF rattle impact forces in component systems is presented based on a reception plate transfer matrix inversion. The investigated component is mounted on the reception plate and rattle is induced by direct low frequency rigid body excitation of the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Micro-Macro Acoustic Modeling of Heterogeneous Foams with Nucleation Perturbation

Duke University-Johann Guilleminot
Ecole des Ponts ParisTech-Michel BORNERT
  • Technical Paper
  • 2020-01-1526
To be published on 2020-06-03 by SAE International in United States
The properties of a polyurethane foam are greatly influenced by the addition of graphite particles during the manufacturing process, initially used as a fire retardant. These thin solid particles perturbate the nucleation process by generating bubbles in its immediate vicinity. The preponderance of work so far has focused on foams that are locally relatively homogeneous. We propose a model for locally inhomogeneous foams (including membrane effects) consisting of a random stack of spheres that permits one to represent certain pore size distribution functions. The cellular structure of the foam is obtained through a Laguerre tessellation and the solid skeleton determined from the minimization of surface energy (Surface Evolver). The structure of real foam samples is analyzed using X-ray computed tomography and scanning electron microscopy followed by image processing to create computerized three-dimensional models of the samples. The corresponding effective material parameters, including the permeability, the tortuosity and the viscous characteristic length are computed by applying a numerical homogenization approach. All the numerical data are presented, discussed and further compared with experimental results.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

3D Audio Reproduction via Headrest equipped with Loudspeakers – Investigations on Acoustical Design Criteria

AUDIO MOBIL Elektronik GmbH-Thomas Hatheier
Inst. of Electronic Music and Acoustics-Manuel Brandner, Alois Sontacchi
  • Technical Paper
  • 2020-01-1567
To be published on 2020-06-03 by SAE International in United States
This paper focuses on the analysis and evaluation of acoustical design criteria to produce a plausible 3D sound field solely via headrest with integrated loudspeakers at the driver/passenger seats in the car cabin. Existing audio systems in cars utilize several distributed loudspeakers to support passengers with sound. Such configurations suffer from individual 3D audio information at each position. Therefore, we present a convincing minimal setup focusing sound solely at the passenger’s ears. The design itself plays a critical role for the optimal reproduction and control of a sound field for a specific 3D audio application. Moreover, the design facilitates the 3D audio reproduction of common channel-based, scene-based, and object-based audio formats. In addition, 3D audio reproduction enables to represent warnings regarding monitoring of the vehicle status (e.g.: seat belts, direction indicator, open doors, luggage compartment) in spatial accordance. Furthermore, individual sound zones enable superior in-car communication between seats regardless of the current driving situation. An often overlooked topic is the acoustical privacy of in-car systems towards the exterior especially during telephony which is also tackled…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Innovative Rear Air Blower Design Application for Improving Cabin Thermal Comfort with improved Air Distribution and Air Quality.

Subros Ltd-Ravi Garg, Suraj maske, Yogendra Singh Kushwah
  • Technical Paper
  • 2020-28-0034
To be published on 2020-04-30 by SAE International in United States
In recent times, overall thermal comfort and air quality requirement have increased for vehicle cabin by multifold. To achieve increased thermal comfort requirements, multiple design innovation has happened to improve HVAC performance. Most of the advance and add on features like Multizone HVAC, dedicated rear HVAC, Automatic climate control, Advance Air filters, and Ionizers etc lead to increase in cost, power consumption, weight, and integration issues. Besides this in the vehicle with only front HVAC, airflow is not enough to meet rear side comfort for many cars in the B/C/SUV segment. This study aims to analyze the various parameters responsible for human thermal comfort inside a car with the focus on lightweight, low power consumption, compact Rear Blower to make passengers more comfortable by providing optimum airflow inline of mean radiant temperatures and cabin air temperature. The new design of Rear blower external surfaces has a set of air modifier surfaces in the direction of flow outlet. The second set of air modifier surfaces & an air deflator portion provided just upstream of outlet portion.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Stapp Car Crash Journal Vol. 63, 2019

  • Book
  • B-STAPP2019
To be published on 2020-04-30 by The Stapp Association in United States

This title includes the technical papers developed for the 2018 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes. The topics covered this year include: • Machine Learning Based Model for Predicting Head Injury Criterion (HIC)
• Investigating Combined Thoracic Loading Using the Elderly Female Dummy (EFD)
• Passenger Injury Analysis Considering Vehicle Crash after AEB Activation
• Factors Affecting Child Injury Risk in Motor-Vehicle Crashes
• A Sensor Suite for Toeboard Three-Dimensional Deformation Measurement During Crash
• Brain Strain from Motion of Sparse Markers
• Short Communications

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Unsettled Topics in the Application of Satellite Navigation to Air Traffic Management

VIGIL Inc.-James L. Farrell
  • Research Report
  • EPR2020010
To be published on 2020-04-29 by SAE International in United States
Contemporary air traffic management (ATM) challenges are both (1) acute and (2) growing at rates far outpacing established ways for absorbing technological innovation. Lack of timely response will guarantee failure to meet demands. Immediately that creates a necessity to identify means of coping and judging new technologies based on possible speed of adoption. Paralleling the challenges are developments in capability, both recent and decades old. Some steps (e.g., Global Positioning System (GPS) backup) are well known and, in fact, should have progressed further long ago. Others (e.g., sharing raw measurements instead of position fixes) are equally well known and, if followed by further flight tests initiated (and successful) years ago, would have produced a wealth of in-flight experience by now if development had continued. Other possibilities (e.g., automated pilot override) are much less common and are considered largely experimental. This SAE EDGE™ Research Report is aimed at focusing industry attention on unsettled ATM issues and activities that appear most likely to offer solutions, starting with the near term and continuing on toward increasing versatility and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Automated Driving System Safety: Miles for 95% Confidence in “Vision Zero”

Driving Safety Consulting LLC-Richard Allen Young
  • Technical Paper
  • 2020-01-1205
To be published on 2020-04-14 by SAE International in United States
Engineering reliability models from RAND, MobilEye, and Volvo concluded that billions of miles of on-road data were required to validate that the real-world fatality rate of an “Automated Driving System-equipped vehicle” (AV) fleet for an improvement over human-driven conventional vehicles (CV). RAND said 5 billion miles for 20%, MobileEye 30 billion for 99.9%, and Volvo 5 billion for 50% improvement. All these models used the Gaussian distribution, which is inaccurate for low crash numbers. The current study proposes a new epidemiologic method and criterion to validate real-world AV data with 95% confidence for zero to ten fatal crashes. The upper confidence limit (UL) of the AV fatal crash rate has to be lower than the CV fatal crash rate with 95% confidence. That criterion is met if the UL of the AV fatal crash incidence rate ratio estimate is below one. That UL was estimated using the mid-P exact method for calculating confidence limits for a dual Poisson process, using a one-tailed 95% confidence level. The required AV mileage was adjusted by trial and error…