Your Selections

Safety
Active safety systems
Collision avoidance systems
Collision warning systems
Air traffic control
Airworthiness
Crash research
Biomechanics
Crashes
Accident reconstruction
Accident types
Frontal collisions
Jackknife crashes
Rear-end crashes
Rollover accidents
Side impact crashes
Crash prevention
Crash statistics
Injuries
Child injuries
Fatal injuries
Head injuries
Injury causation
Injury classification
Pedestrian injuries
Crashworthiness
Event data recorders
Fueling safety
Hazards and emergency operations
Evacuation and escape
Fire
Fire detection
Fire fighting
Fire prevention
Hazardous materials
Biohazards
Radiation
Lightning
Lightning protection
Rescue operations
On-board systems safety
Pedestrian safety
Protective systems
Occupant protection
Protective equipment
Helmets
Protective clothing
Spacesuits
Protective structures
Operator protective structures
Rollover protective structures
Radiation protection
Restraint systems
Child restraint systems
Passive restraint systems
Airbag systems
Safety belts
Safety regulations and standards
Safety testing and procedures
Anthropometric test devices
Flotation
Icing and ice detection
Impact tests
Risk assessments
Visibility
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Committees

Events

Magazine

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Automated Driving System Safety: Miles for 95% Confidence in “Vision Zero”

Driving Safety Consulting LLC-Richard Allen Young
  • Technical Paper
  • 2020-01-1205
To be published on 2020-04-14 by SAE International in United States
Engineering reliability models from RAND, MobilEye, and Volvo concluded that billions of miles of on-road data were required to validate that the real-world fatality rate of an “Automated Driving System-equipped vehicle” (AV) fleet for an improvement over human-driven conventional vehicles (CV). RAND said 5 billion miles for 20%, MobileEye 30 billion for 99.9%, and Volvo 5 billion for 50% improvement. All these models used the Gaussian distribution, which is inaccurate for low crash numbers. The current study proposes a new epidemiologic method and criterion to validate real-world AV data with 95% confidence for zero to ten fatal crashes. The upper confidence limit (UL) of the AV fatal crash rate has to be lower than the CV fatal crash rate with 95% confidence. That criterion is met if the UL of the AV fatal crash incidence rate ratio estimate is below one. That UL was estimated using the mid-P exact method for calculating confidence limits for a dual Poisson process, using a one-tailed 95% confidence level. The required AV mileage was adjusted by trial and error…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Seat Design Studies

Kettering University-Santhosh Sivan Kathiresan, Raghu Echempati
  • Technical Paper
  • 2020-01-1101
To be published on 2020-04-14 by SAE International in United States
In this paper, further studies have been carried out on the analysis and effect of certain design modifications on the structural integrity of an automotive seating rail structure. Automotive seating is one of the important component in the automotive industry due to their main function to carry the weight of passenger as well as to sustain the vibrations from the road. The seat structures are assembled to carry other important components such as side airbag and seatbelt systems. The entire seating is supported firmly and attached to the bottom bodywork of the vehicle through the linkage assembly called the seat rails. Seat rails are adjustable in their longitudinal motion which plays an important role in giving the passengers enough leg room to make them feel comfortable. Therefore, seat rails under the various operating conditions such as forward and normal positions should be able to withstand the complete weight of the human and the associated loads due to vibrations. In this paper, some of the functional requirements such as strength, stiffness, durability and crash performance are…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Research on Trajectory Planning for Four-wheel Steering Autonomous Vehicle with V2V Communication

Jilin University-Fangwu Ma, Yucheng Shen, Jiahong Nie, Xiyu Li, Yu Yang, Jiawei Wang, Guanpu Wu
  • Technical Paper
  • 2020-01-0114
To be published on 2020-04-14 by SAE International in United States
Lane-changing is a typical traffic scene effecting on road traffic with high request for reliability, robustness and driving comfort to improve the road safety and transportation efficiency. The development and application of connected autonomous vehicles with V2V communication provides more advanced control strategies to research of lane-changing. Meanwhile, Four-wheel steering is an effective way to improve flexibility of vehicle. The front and rear wheels rotate in opposite direction to reduce the turning radius to improve the servo agility operation at the low speed while those rotate in same direction to reduce the probability of the slip accident to improve the stability at the high speed. Hence, this paper established Ackerman front-wheel steering with proportional rear-wheel steering vehicle dynamic model and quasi real lane-changing scenes to analyze the motion constraints of the vehicles. Then, the polynomial function and Sin function were used for the lane-changing trajectory planning and the extended rectangular vehicle model was established to get vehicle collision avoidance condition. Vehicle comfort requirements and lane-changing efficiency were used as the optimization variables of optimization function.…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Shape Optimization of Engine Block for Reducing Noise Radiation

ESI North America-Wenlong Yang, Ricardo de Alba Alvarez
  • Technical Paper
  • 2020-01-0404
To be published on 2020-04-14 by SAE International in United States
Reducing the noise radiated from engines has become important. Optimizing the shape of the engine block is one promising approach to achieve this goal. The objective of this paper is to perform the shape optimization of an engine block to reduce its radiated noise in a certain frequency range. Specifically investigated is a six-cylinder engine made of aluminum and steel. The investigation is performed by numerical models, which compose the finite elements for simulating the structure and boundary elements for simulating the exterior airspace. For optimization, a series of ribs are added on the surface of the engine block. The optimization variables are set up to represent the shapes of the ribs. The limits of the shape changes are defined by the optimization constraints. The radiated power and the sound pressure at certain locations are chosen as the optimization objectives. The Genetical Algorithm is taken to perform the optimization. It is found that the optimization calculation successfully converges and gives the best design. The radiated noise is reduced by certain amount. A Pareto plot with…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Using Vehicle EDR Data to Calculate Motorcycle Delta-V in Motorcycle-Vehicle Lateral Front End Impacts

Momentum Engineering Corp.-Edward Fatzinger, Jon Landerville
  • Technical Paper
  • 2020-01-0885
To be published on 2020-04-14 by SAE International in United States
This research focuses on the use of Event Data Recorders (EDR) to assist in calculating speed loss or Delta-V undergone by a motorcycle in a broadside type impact into a vehicle. One common methodology in calculating motorcycle Delta-V utilizes measurement of the deformation to both the vehicle and motorcycle. In certain scenarios however, it becomes difficult to calculate the motorcycle Delta-V from analysis of deformation. For instance, if the front suspension becomes fractured or separated on the motorcycle, or the motorcycle collides with the wheel area of the vehicle, deformation measurement may be unfavorable. If the struck vehicle has EDR data, this could be a useful tool in calculating motorcycle Delta-V or corroborating motorcycle Delta-V calculations from crush or other methodologies. Certain parameters critical to calculation of motorcycle Delta-V must be considered, including the appropriate effective mass to use for the motorcycle/rider combination. In addition, comparisons were made between instrumented yaw rate and calculated yaw rate to account for the airbag control module (ACM) location. In this study, three crash tests were performed in which…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Development and Application of a Collision Avoidance Capability Metric

AAA Northern California Nevada & Utah-Paul Wells, Atul Acharya
Dynamic Research Inc.-Jordan Silberling, Joseph Kelly, John Lenkeit
  • Technical Paper
  • 2020-01-1207
To be published on 2020-04-14 by SAE International in United States
This paper describes the development and application of a newly developed metric for evaluating and quantifying the capability of a vehicle/controller (e.g., Automated Vehicle or human driver) to avoid collisions in nearly any potential scenario, including those involving multiple potential collision partners and roadside objects. At its core, this Collision Avoidance Capability (CAC) metric assesses the vehicle’s ability to avoid potential collisions at any point in time. It can also be evaluated at discrete points, or over time intervals. In addition, the CAC methodology potentially provides a real-time indication of courses of action that could be taken to avoid collisions. The CAC calculation evaluates all possible courses of action within a vehicle’s performance limitations, including combinations of braking, accelerating and steering. Graphically, it uses the concept of a “friction ellipse”, which is commonly used in tire modeling and vehicle dynamics as a way of considering the interaction of braking and turning forces generated at the tire contact patches. When this concept is applied to the whole vehicle, and the actual or estimated maximum lateral and…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Dynamic Object Map based architecture for robust CVS systems.

Hyundai Motor Group-Syed Mahmud
University of Central Florida-Rodolfo Valiente, Arash Raftari, Mahdi Zaman, Yaser Pourmohammadi Fallah
  • Technical Paper
  • 2020-01-0084
To be published on 2020-04-14 by SAE International in United States
Connected and Autonomous Vehicles (CAV) rely on information obtained from sensors and communication to make decisions. In a Cooperative Vehicle Safety (CVS) system, information from remote vehicles (RV) is available at the host vehicle (HV) through the wireless network. Safety applications such as crash warning algorithms use this information to estimate the RV and HV states. However, this information is uncertain and sparse due to communication losses, limitations of communication protocols in high congestion scenarios, and perception errors caused by sensor limitations. In this paper we present a novel approach to improve the robustness of the CVS systems, by proposing an architecture that divide application and information/perception subsystems. This architecture is enabled by a Dynamic Object Map (DOM) middle layer which uses the received data from HV local sensors and integrates it with the data received through wireless communication to track RVs and create a real-time dynamic map of HV’s surrounding. The architecture is validated with simulations and in a real environment using a remote vehicle emulator (RVE), which allows the joint study of the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Heavy Vehicles Kinematics of Automatic Emergency Braking Test Track Scenarios

NHTSA-Devin Elsasser
Transportation Research Center Inc.-M. Kamel Salaani, Christopher Boday
  • Technical Paper
  • 2020-01-0995
To be published on 2020-04-14 by SAE International in United States
This paper presents the test track scenario design and analysis used to estimate the performances of heavy vehicles equipped with forward collision warning and automatic emergency braking systems in rear-end crash scenarios. The first part of this design and analysis study was to develop parameters for brake inputs in test track scenarios simulating a driver that has insufficiently applied the brakes to avoid a rear-end collision. In the second part of this study, the deceleration limits imposed by heavy vehicles mechanics and brake systems are used to estimate automatic emergency braking performance benefits with respect to minimum stopping distance requirements set by Federal Motor Vehicle Safety Standards. The results of this study were used to complete the test track procedures and show that all heavy vehicles meeting regulatory stopping distance requirements have the braking capacity to demonstrate rear-end crash avoidance improvements in the developed tests.
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

An Analysis of the Effects of Ventilation on Burn Patterns Resulting from Passenger Compartment Interior Fires

Ford Motor Company-James J. Engle, Jennifer L. Buckman, Jeff Williams, Erich Kemnitz, Eric Kalis
  • Technical Paper
  • 2020-01-0923
To be published on 2020-04-14 by SAE International in United States
Vehicle fire investigators often use the existence of burn patterns and the amount and location of fire damage to determine the fire origin and its cause. The purpose of this paper is to study the effects of ventilation location on the burn patterns and burn damage of passenger compartment fires. Four similar 20XX Ford Fusion vehicles were burned. The fire origin and first material ignited were the same for all four vehicles. In each test, a different door window was down for the duration of the burn test. Each vehicle was allowed to burn until the windshield, back glass, or another window, other than the window used for ventilation, failed, thus changing the ventilation pattern. At that point, the fire was extinguished. Temperatures were measured in the passenger compartment and video and still photography were recorded. Post-burn, the vehicle burn patterns were analyzed and conclusions drawn on: ability to determine a window was open during the fire, which window was open, the effect the open window had on burn patterns and burn damage, and the…
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

NHTSA's 2018 Heavy Vehicle Automatic Emergency Braking Test Track Research Results

NHTSA-Devin Elsasser
Transportation Research Center Inc.-M. Kamel Salaani, Christopher Boday
  • Technical Paper
  • 2020-01-1001
To be published on 2020-04-14 by SAE International in United States
This paper presents National Highway Traffic Safety Administration’s 2017 and 2018 test track research results with heavy vehicles equipped with forward collision warning and automatic emergency braking systems. Newly developed objective test procedures were used to perform and collect performance data with three single-unit trucks equipped with the crash avoidance systems. The results of this research show that the test procedures are applicable to many heavy vehicles and indicate that performance improvements in heavy vehicles equipped with these safety systems can be objectively measured.