Your Selections

Show Only


File Formats

Content Types












Aerodynamic analysis of electric passenger car using wind turbine concept at front end

ARAI Academy-Snehil Mendiratta, Sugat Sharma
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2396
To be published on 2019-11-21 by SAE International in United States
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of the work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Active front grill shutters will be used to optimize the aerodynamic drag at different vehicle speeds. Initially the aerodynamic analysis of a basic electric car model is performed and then it is validated with the scaled model by using wind tunnel testing. The modified model is designed with wind turbines and with add-on-devices - vortex generator, spoiler and diffuser and then simulated. Based on the simulation carried out in ANSYS Fluent, our scaled down optimized model is fabricated and tested in Wind Tunnel for validation. A successful reduction in the Drag Coefficient by 5.9% is achieved.

Aerodynamic analysis of commercial vehicle using active vortex generators concept

ARAI-Kamalkishore Vora
ARAI ACADEMY, PUNE-Saurabh Jayant kulkarni
  • Technical Paper
  • 2019-28-2409
To be published on 2019-11-21 by SAE International in United States
Any physical body being propelled through the air has drag associated with it. Drag will be created on the surface of the vehicle due to the flow separation at the rear end. In aerodynamics the flow separation can often result in increased drag particularly pressure drag, to delay the flow separation, the vortex generators are used on the roof end of the vehicle just before the point of flow separation. The objective of this project is to perform aerodynamic analysis of commercial vehicle using active vortex generators concept. First, the aerodynamic analysis of a baseline commercial vehicle model is performed and same is validated with the scaled model by using a wind tunnel test. Further analysis has been done by using active vortex generators concept with variation of angle of attacks for vehicle speed of 50, 70, 90 kmph. Also, analysis has been carried out for six different yaw angles. The simulation is carried out with the use of ANSYS Fluent. The simulation result shows the significant drag coefficient reduction of the commercial vehicle with…

Analysis of pressure variation in wheel using statistical methods

Abhishek Mandhana
College of Engineering Pune-Rajiv basavarajappa PhD
  • Technical Paper
  • 2019-28-2450
To be published on 2019-11-21 by SAE International in United States
Objective: The Objective of the research is to detect drop in level of pressure in the wheel with respect to nominal pressure using data obtained from speed sensors. The research discusses the standard procedure of experimentation to obtain data which eventually used to produce results. This procedure is taken from principles Design of Experiments. Statistical tools are used to analyze and give determining factors for pressure variation. Methodology: To study idea, we made use of two-wheeler platform and collected data of wheel speed sensors on both wheels. The idea is when there is any change in tire pressure the radius of the wheel also changes and usually this relation is direct. Hence, change in tire pressure changes the angular velocity of the wheel. In this approach wheel speed sensors are used to measure the angular speed for standard and reduced pressure conditions. The data obtained from the wheel speed sensor is analyzed through statistical methods and different determining values are calculated. These determining parameters are compared to see the variations in the pressure. To obtain…

Comparison of Indian Regional Navigation Satellite System (IRNSS) and Global Positioning System (GPS) in Vehicle Tracking Application

International Centre For Automotive Tech.-Aditi Sethi
  • Technical Paper
  • 2019-28-2452
To be published on 2019-11-21 by SAE International in United States
Authors: Aditi Sethi1, Sonia Nain2, Madhusudan Joshi3 Organization: 1,2,3 International Centre for Automotive Technology, Manesar Introduction: The Indian Regional Navigation Satellite System (IRNSS), with an operational name of NAVIC, is an autonomous regional satellite navigation system developed by Indian Space Research Organization (ISRO) in 2018 that provides accurate real-time positioning and timing services. It covers India and a region extending 1,500 km around it, with plans for further extension. The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radio navigation system owned by the United States government and operated by the United States Air Force, it was launched in 1978. It is a global navigation satellite system that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. Objective: IRNSS is a new navigation system for India as compared to GPS which is successfully operational and accepted globally since 1978. Therefore, comparison will help us to establish that IRNSS alone is sufficient for tracking…

Analysis and Aerodynamic Stability on Design of Low cost and Economical Monocopter

UG Scholar-Harshil BHANDARI
  • Technical Paper
  • 2019-28-2523
To be published on 2019-11-21 by SAE International in United States
Most recent or all developments in the field of small UAV’s seem to use Quadcopters. It’s a valued commenting that a quadcopter is a smaller amount stable than a similar regular chopper and is additionally less economical. A Quadcopter UAV’s with four propellers is always a major concern to the society when brings to its stability as its major factor. To design and analyze the use of one propeller monocopter is the main objective of this paper. Wacky Whirler technology used here to demonstrate the passage of the monocopter. It is a single propeller powered with a coreless motor which is a modern enhancement in the UAV. It is based on the All Rotating monocopter theory. In the proposed system, controller based on IOT can be used which will be helpful in monitoring and processing the microdrone status. These forms of style have several potential applications in surveillance and agriculture; there are several eventualities wherever it's tempting for the stable UAV to be able to travel safely to long distances and hover for extended periods of time.

Aerodynamic analysis of race car using active wing concept.

ARAI Academy-Prakash P Bhanushali
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2395
To be published on 2019-11-21 by SAE International in United States
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18˚ for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters. To validate the results, a scaled model prototype is manufactured and tested in wind tunnel. Keywords: Active aerodynamics, wing, angle of attack, racecar.

Aerodynamic Analysis of a Passenger Car to Reduce Drag using Active Grill Shutter and Active Air Dam

ARAI Academy-Raghav Tandon
Automotive Research Association of India-Mohammad Rafiq Agrewale, Kamalkishore Vora
  • Technical Paper
  • 2019-28-2408
To be published on 2019-11-21 by SAE International in United States
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks and the simulation has been carried out using ANSYS Fluent. The result shows a significant drag reduction of 12.23% using active grill shutters and air dams.

Design and Fabrication of CFRP wheel centre for FSAE Race-car

VIT-Sangeet Aggarwal, Renold Elsen
  • Technical Paper
  • 2019-28-0117
To be published on 2019-10-11 by SAE International in United States
The work focuses on the design of a Carbon Fibre Reinforced Polymer (CFRP) Wheel Centre targeting key parameters such as reduced un-sprung mass and lower rotational inertia in the (PRV 2017) Formula-style single seater race car developed for Formula Student Germany. The main issue that was reported by the vehicle dynamics team was to get a customised wheel-offset for our FSAE race-car. To address the issue with an added advantage of reduced un-sprung mass and lower rotational inertia, CFRP wheel centres were introduced. Previously the team used the Keizer Wheel Centre made of Aluminium (1.8 kilograms) which didn’t provide the required wheel-offset as per the geometry designed by the Vehicle Dynamics (VD) team. So, the composite department worked on the development of CFRP 24-layered wheel centre.Designing of CFRP Wheel Centre was based on the design constraints such as distance between hub and wheel assembly to ensure the same geometry of the car as per the design of VD within the set of Formula Student rules. To develop the CFRP Wheel Centre and CAE routine were…

Aerodynamic analysis on under body drag and vehicle performance of active front spoiler for high CG vehicles

Vellore Institute of Technology-Shikhar Chaudhary, Prabu Krishnasamy, Rishabh Kothari, Govindasamy Rajamurugan
  • Technical Paper
  • 2019-28-0025
To be published on 2019-10-11 by SAE International in United States
Vehicle aerodynamic drag reduction is the effective technique to enhance the fuel economy, performance and top speed of a vehicle. The contribution of the under body parts like wheels, wheel arch and wheel housing accounts for about 40-50% of the total drag of a car, which further increases in case of vehicles with higher CG. Thus, it seems logical to focus attention on the under body aerodynamic drag reduction. In this study an active spoiler is placed towards the front end of the vehicle which will divert the air flow from front towards the radiator. The active spoiler revolves according to the signals received from the radar sensors placed at the lower end to detect obstacles which will prevent it from damage. The objective of this study is to examine the effect of the air flow diversion on under body drag. The effect of air flow diversion on fuel consumption, radiator effectiveness and top speed is numerically evaluated. A Renault Duster model is considered for the study as base model designed in DS Solidworks 2018…

Mechanical and Metallurgical analysis of HSLA steel for Gas Tungsten Arc Welding with different shielding gases

CSI College of Engineering-Dhanraj Gurusamy, Prashanth Murthy, Senthilkumar Ramakrishnan, Sivakumar Nanjappan
Sri Krishna College of Engineering and Technology-Soundararajan Ranganathan
  • Technical Paper
  • 2019-28-0069
To be published on 2019-10-11 by SAE International in United States
The special designed HSLA (High Speed Low Alloy) Steel is most commonly used in Naval Steel Structures and aircraft structures due to its indigenous properties. The aim of this paper is used to investigate the effect of shielding gas in the Gas Tungsten Arc Welding process. The sheet plate of size 300mmx150mmx10mm is taken and welded by GTAW process using argon and helium on the shielding gas. DMR 249A plates are welded by GTAW by using helium and argon as shielding gas with a flow rate of 16 L/min, the interpass temperature is 140ᵒ C and the heat input is less than 1.2KJ/min which is maintained to get a balanced phases of α and γ where the impact toughness, Tensile and micro hardness was studied with different shielding gas and the metallurgical properties were analysed in the base metal, heat affected zones and weld zones. The sheets contain 1.9%Ti and 6.2% Ni and the weld beads were studied for both the type of shielding gases. The study reveals that for helium gas the penetration is…