Your Selections

Indian Institute of Technology Guwahati, India
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Experimental Investigation of Electric Vehicle Performance and Energy Consumption on Chassis Dynamometer Using Drive Cycle Analysis

SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy

Indian Institute of Technology Guwahati, India-Praveen Kumar
CSIR-Indian Institute of Petroleum, India-Gananath Doulat Thakre
  • Journal Article
  • 13-01-01-0002
Published 2019-12-02 by SAE International in United States
This article reports an experimental study carried out to investigate the vehicle performance and energy consumption (EC) of an electric vehicle (EV) on three different driving cycles using drive cycle analysis. The driving cycles are the Indian Driving Cycle (IDC), Modified Indian Driving Cycle (MIDC) and Worldwide harmonized Light vehicles Test Cycle (WLTC). A new prototype electric powertrain was developed using an indigenous three-phase induction motor (3PIM), Li-ion battery (LiB) pack, vector motor controller, and newly developed mechanical parts. In this research work, a pollution-causing gasoline car (Maruti Zen) was converted into an EV by using the new powertrain. The EV conversion vehicle was used as the test vehicle. After the removal of the Internal Combustion Engine (ICE) the new powertrain was integrated with the vehicle’s gearbox (GB) system which was configured on a single motor, fixed gear configuration having a gear ratio of 1.28:1. The EV performance tests were carried out on the chassis dynamometer that followed the driving cycles. The maximum speed test showed a top speed of 64 km/h for the EV.…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

System Performance Comparison of Direct Torque Control Strategies Based on Flux Linkage and DC-Link Voltage for EV Drivetrains

SAE International Journal of Alternative Powertrains

Indian Institute of Technology Guwahati, India-Kashyap Kumar Prabhakar, C. Upendra Reddy, Amit Kumar Singh, Praveen Kumar
  • Journal Article
  • 08-08-02-0007
Published 2019-11-14 by SAE International in United States
Numerous works have been carried out with perspectives to improve the energy efficiency of electric vehicle (EV) drivetrains; much of the attention has been on the design of highly efficient electric motors, power converters, and energy storage system. Besides the abovementioned factors, selection of the drivetrain configuration and control strategy also influence the efficiency and performance of EV drivetrain. The drivetrain efficiency and performance indices, such as torque ripple and total harmonic distortion (THD) of voltage and current, are sensitive to the direct current (dc)-link voltage and flux linkage values for a drivetrain control strategy. Therefore, in this work, the efficiency and the performance of two popular direct torque controlled induction motor (IM) drives are compared on the basis of adjustable dc-link voltage and flux linkage values for desired operating condition. Both these techniques are implemented on a lab scale test bed. Extensive experiments are performed to determine and compare the drivetrain efficiency maps. Further, dynamic and steady-state (SS) control performance in terms of speed, torque, and flux linkage is examined. Other performance indices, such…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Selection of Reference Flux Linkage for Direct Torque Control Based Induction Motor Drive in Electric Vehicle Applications

SAE International Journal of Alternative Powertrains

Indian Institute of Technology Guwahati, India-Amit Kumar Singh, Upendra Reddy, Kashyap Kumar Prabhakar, Praveen Kumar
  • Journal Article
  • 08-08-01-0001
Published 2019-04-08 by SAE International in United States
The surge in economic activities, in the developing nations, has resulted in rapid expansion of urban centres. This expansion of cities has caused a rapid increase in vehicular traffic, which in turn has caused deterioration of air quality. To overcome the problem of unprecedented air pollution, the governments worldwide have framed policies for faster adoption of electric vehicles. One of the major challenges faced is the development of low- cost drive for these vehicles and keeping the imports to a minimum. As a result of this, the trend is to move away from the permanent magnet-based motor technology and to use induction motor-based drivetrain. For the induction motors to be successful in electric vehicle drivetrain application, it is important to have a robust speed control algorithm. This work aims at adapting a direct torque control technique for induction motor’s speed control. The work addresses the impact of reference flux linkage on the operation of an induction motor for direct torque control over a wide range of operation. A Finite Element Analysis based induction motor model…
This content contains downloadable datasets
Annotation ability available