Your Selections

Electroimpact Inc.
Show Only

Collections

File Formats

Content Types

Dates

Sectors

Topics

Authors

Publishers

Affiliations

Events

   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

Case Study on the Challenges and Responses of a Large Turnkey Assembly Line for the C919 Wing

Electroimpact Inc.-Mark Forbes
  • Technical Paper
  • 2020-01-0010
Published 2020-03-10 by SAE International in United States
Design and production of an assembly system for a major aircraft component is a complex undertaking, which demands a large-scale system view. Electroimpact has completed a turnkey assembly line for producing the wing, flap, and aileron structures for the COMAC C919 aircraft in Xi’an, China. The project scope includes assembly process design, material handling design, equipment design, manufacture, installation, and first article production support. Inputs to the assembly line are individual component parts and small subassemblies. The assembly line output is a structurally completed set of wing box, flaps, and ailerons, for delivery to the Final Assembly Line in Shanghai. There is a trend toward defining an assembly line procurement contract by production capacity, versus a list of components, which implies that an equipment supplier must become an owner of production processes. The most significant challenge faced was the amount of front end engineering work required to develop detailed assembly processes and reconcile them with the customer, who remains the actual process owner. Other challenges include aircraft maturity delays, design changes due to process definition…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

AFP Processing of Dry Fiber Carbon Materials (DFP) for Improved Rates and Reliability

Electroimpact Inc.-Michael Assadi, Tyler Field
  • Technical Paper
  • 2020-01-0030
Published 2020-03-10 by SAE International in United States
Automated fiber placement of pre-impregnated (pre-preg), thermoset carbon materials has been industrialized for decades whereas dry-fiber carbon materials have only been produced at relatively low rates or volumes for large aerospace structures. This paper explores the differences found when processing dry-fiber, thermoset, carbon materials (DFP) as compared to processing pre-preg, thermoset materials with Automated Fiber Placement (AFP) equipment at high rates. Changes to the equipment are required when converting from pre-preg to dry fiber material processing. Specifically, the heating systems, head controls, and tow tension control all must be enhanced when transitioning to DFP processes. Although these new enhancements also require changes in safety measures, the changes are relatively small for high performance systems.Processing dry fiber material requires a higher level of heating, tension control and added safety measures. However, once these are achieved, processing rates and reliability may be significantly improved for DFP versus traditional pre-preg AFP processing. Overall payout speeds as well as steering speeds can be increased for dry fiber resulting in increased laydown rates when using current AFP processing techniques. The…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.
new

In-Process Hole and Fastener Inspection Using a High-Accuracy Laser Sensor

Electroimpact Inc.-Zachary Luker, Erin Stansbury
  • Technical Paper
  • 2020-01-0015
Published 2020-03-10 by SAE International in United States
Electroimpact has produced a new in-process inspection system for use on drilling and fastening systems. The system uses a high-accuracy, non-contact, laser system to measure the flushness of installed fasteners. The system is also capable of measuring part normality and providing feedback to the machine for correction. One drawback to many automatic inspection systems is measurement error. Many sources of measurement error exist in a production environment, including drilling chips, lubrication, and fastener head markings. Electroimpact’s latest system can create a visualization of the measured fastener for the operator to interpret. This allows the operator to determine the cause of a failed measurement, thus reducing machine downtime due to false negatives.Electroimpact created a custom C# WPF application that queries the point-cloud data and analyzes the raw data. A custom “circle Hough transform” scoring algorithm is used to find the center of the nosepiece (pressure foot). A best fit plane is calculated from the point cloud data to find the panel surface. This plane is then used to output panel normality in the A and B…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

C919 Trailing Edge Assembly Interchangeable Tooling

Electroimpact Inc.-James Dineley
Published 2019-09-16 by SAE International in United States
Traditional Trailing Edge (TE) assembly that utilise fixtures for accurate positioning of aircraft (a/c) parts do not allow for removal of specific tooling from the fixtures to travel with the TE, post assembly. Instead, the tooling that positions all the primary a/c assembly datums generally utilise precision pins of various sizes that index and clamp the a/c ribs. Often it is difficult to remove the pins post assembly before the spar can be taken out of the fixture. Use of hammers is common place to hit pins out of holes which is less than ideal considering the a/c parts can be fragile and the tooling is precision set. Also, the Main Assembly Fixture (MAJ) that will receive the TE will inevitably need to relocate some if not all the primary a/c ribs and therefore will most likely be subject to some amount of persuasion. Electroimpact have for many years used cup cone locators that allows static tooling to be temporarily ‘loosened’ and therefore made more compliant for pin insertion/removal, this has been successful to reduce…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Flexible All Electric Riveter

Electroimpact Inc.-Peter B. Zieve
Published 2019-03-19 by SAE International in United States
A new style of all electric riveting machine has been developed with saddle hoppers that does not require a track between the hoppers and the fingers. This enables feeding square rivets without difficulty. The upper ram has a bent knee which allows the rivet fingers to be brought up to the hopper and rotated 30 degrees rather than the rivet sliding down a track, which minimizes jamming that occurs with some fasteners in the track, and increases reliability. A mixture of fasteners can be loaded side by side in the hoppers, increasing flexibility. The rivet feeding is accomplished by bringing the rivet fingers to the hopper. The machine uses a power drawbar to change out different rivet fingers. A small industrial robot is incorporated into the machine to complete different sized coupons and also complete small assemblies. In larger machines larger robots or CNC positioners can be used to scale up the use of the machine.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Collaborative Robotic Fastening Using Stereo Machine Vision

SAE International Journal of Advances and Current Practices in Mobility

Electroimpact Inc.-Ryan Haldimann
  • Journal Article
  • 2019-01-1374
Published 2019-03-19 by SAE International in United States
With typically over 2.3 million parts, attached with over 3 million fasteners, it may be surprising to learn that approximately two out of every three fasteners on a twin aisle aircraft are fastened by hand. In addition the fasteners are often installed in locations designed for strength and not necessarily ergonomics. These facts lead to vast opportunities to automate this tedious and repetitive task. The solution outlined in this paper utilizes the latest machine vision and robotics techniques to solve these unique challenges. Stereo machine vision techniques find the fastener on the interior of an aerospace structure and calculate the 6DOF (Degrees of Freedom) location in less than 500ms. Once the fastener is located, sealed, and inspected for bead width and gaps, a nut or collar is then installed. Force feedback capabilities of a collaborative robot are used to prevent part damage and ensure the nut or collar are properly located on the fastener. This type robot also opens up the possibility of interacting more closely with humans as fastening can be done simultaneously with…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Process for Delivering Extreme AFP Head Reliability

SAE International Journal of Advances and Current Practices in Mobility

Electroimpact Inc.-Todd Rudberg, Joshua Cemenska, Ethan Sherrard
  • Journal Article
  • 2019-01-1349
Published 2019-03-19 by SAE International in United States
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer…
This content contains downloadable datasets
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

11 Reasons to Use Automated Metrology

SAE International Journal of Advances and Current Practices in Mobility

Electroimpact Inc.-Robert Flynn, Carson Miller
  • Journal Article
  • 2019-01-1369
Published 2019-03-19 by SAE International in United States
Aerospace structures manufacturers find themselves frequently engaged in large-scale 3D metrology operations, conducting precision measurements over a volume expressed in meters or tens of meters. Such measurements are often done by metrologists or other measurement experts and may be done in a somewhat ad-hoc fashion, i.e., executed in the most appropriate method according to the lights of the individual conducting the measurement. This approach is certainly flexible but there are arguments for invoking a more rigorous process. Production processes, in particular, demand an automated process for all such “routine” measurements. Automated metrology offers a number of advantages including enabling data configuration management, de-skilling of operation, real time input data error checking, enforcement of standards, consistent process execution and automated data archiving. It also reduces training, setup time, data manipulation and analysis time and improves reporting.This paper draws on experiences from a recent automated metrology project and examines some of the challenges and benefits of successful measurement automation.
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Phased Approach to Optimized Robotic Assembly for the 777X

Electroimpact Inc.-Russell DeVlieg
Boeing Co.-Ryan Mir
Published 2019-03-19 by SAE International in United States
Low rate initial production of the 777X flight control surfaces and wing edges has been underway at the Boeing St. Louis site since early 2017. Drilling, inspection, and temporary fastening tasks are performed by automated multi-function robotic systems supplied by Electroimpact. On the heels of the successful implementation of the initial four (4) systems, Phases II and III are underway to meet increasing production demands with three (3) and four (4) new cells coming online, respectively. Assemblies are dedicated to particular cells for higher-rate production, while all systems are designed for commonality offering strategic backup capability. Safe operation and equipment density are optimized through the use of electronic safeguards. New time-saving process capabilities allow for one-up drilling, hole inspection, fastening, fastener inspection, and stem shaving. Multi-function end effectors with dual spindles permits drilling and reaming within a single clamp, and hybrid cutting fluid delivery enables a no-compromise approach to process optimization. New automated health checks and calibrations limit the need for operators and maintenance personnel to access the equipment. The integration of these innovative technologies…
Annotation ability available
   This content is not included in your SAE MOBILUS subscription, or you are not logged in.

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

Electroimpact Inc-Paul Haworth
Electroimpact Inc.-Erin C. Stansbury
Published 2019-03-19 by SAE International in United States
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener.Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming. If the fastener head is not seated prior to forming then there is no chance…
Annotation ability available