Results
This SAE Recommend Practice specifies a method for measuring the deflection of friction materials and disc brake pad assemblies in a manner more consistent with classical material compressive strain testing. This SAE test method differs from SAE J2468 in the preload and maximum load applied to the test sample when deflection is measured. It adopts the material applied stress levels found in ISO 6310 (0.5 to 8.0 MPa) using a 25 mm diameter flat plunger.
This SAE Recommended Practice is intended to establish guidelines for conducting passenger car roll-over tests so that data obtained by various test facilities may be more readily compared. A description is provided of the facilities and procedures for a curved rail-ramp technique, which has been found to be successful in producing roll-overs. Techniques and instrumentation for the study and evaluation of vehicle structure effects and occupant movement resulting from roll-overs produced by the curved rail-ramp system are also specified. The curved rail-ramp procedure has been evolved from laboratory and field studies and tests which have sought to establish procedures which would provide realistic simulations of roll-over accidents without collision, and which would be reproducible among laboratories and between different types of passenger cars. The original issue of SAE J857 described ground level and hill roll-over techniques. However, it was found that these procedures were not
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. This hardness method is nondestructive. NOTE—This method is not a measure of friction level. The hardness and the range of hardness are characteristic of each formulation; therefore, the acceptable values and ranges must be established for each formulation and may be affected by processing. NOTE—The hardness of sintered powder metal lining is usually determined with Rockwell superficial hardness equipment. (See ASTM B 347)
This document applies to both Original Equipment Manufacturer and aftermarket route-guidance and navigation system functions for passenger vehicles. It establishes two alternative procedures, a static method and an interrupted vision method, for determining which navigation and route guidance functions should be accessible to the driver while the vehicle is in motion. These methods apply only to the presentation of visual information and the use of manual control inputs to accomplish a navigation or route guidance task. The document does not apply to visual monitoring tasks which do not require a manual control input, such as route following. Voice-activated controls or passenger operation of controls are also excluded. There are currently no compelling data that would support the extension of this document to in-vehicle systems other than navigation systems.
The special risks associated with conducting crash tests on E-vehicles can be divided into two main categories: (1) thermal activity inside the battery (resulting from electrical or mechanical abuse) may lead to energetic emission of harmful and/or flammable gases, thermal runaway, and potentially fire; and (2) the risk of electrocution. Procedures to ensure protection from all types of risk must be integrated into the entire crash test process. This SAE Information Report is intended to provide guidance in this endeavor using current best practices at the time of this publication. As both battery technology and battery management system technology are in a phase of expansion, the contents of this report must then be gaged against current technology of the time and updated periodically to retain its applicability and usefulness. The scope of this document is to provide an understanding of the risks and an overview of the techniques established to reduce the likelihood that an event
This standard is applicable to the marking of aerospace vehicle electrical wires and cables using ultraviolet (UV) lasers. This standard specifies the process requirements for the implementation of UV laser marking of aerospace electrical wire and cable and fiber-optic cable to achieve an acceptable quality mark using equipment designed for UV laser marking of identification codes on aerospace wire and cable. Wiring specified as UV laser markable subject to AS4373 and which has been marked in accordance with this standard will conform to the requirements of AS50881.
This SAE Recommended Practice defines key terms used in the description and analysis of video based driver eye glance behavior, as well as guidance in the analysis of that data. The information provided in this practiced is intended to provide consistency for terms, definitions, and analysis techniques. This practice is to be used in laboratory, driving simulator, and on-road evaluations of how people drive, with particular emphasis on evaluating Driver Vehicle Interfaces (DVIs; e.g., in-vehicle multimedia systems, controls and displays). In terms of how such data are reduced, this version only concerns manual video-based techniques. However, even in its current form, the practice should be useful for describing the performance of automated sensors (eye trackers) and automated reduction (computer vision).
This recommended practice covers the attachment of bonded anti-noise brake pad shims only. Mechanically attached shims (those without bonding) are not covered by this procedure.
Hardness measurements are used as a quality control check of the consistency of formulation and processing of brake linings. Gogan hardness is nondestructive (the penetrator causes shallow surface deformation.). Gogan hardness method alone does not show anything about a lining’s ability to develop friction or to resist fade when used as a friction element in brakes. The hardness and the range of hardness are peculiar to each formulation, thickness, and contour; therefore, the acceptable values and ranges must be established for each formulation and part configuration by the manufacturer.
This SAE Recommended Practice describes the test procedure for conducting a rollover test using a dolly fixture designed to laterally trip a vehicle into a roll. Its purpose is to establish a recommended test procedure which will standardize the procedure between different test facilities. A description of the test procedure, test instrumentation, photographic/video coverage, and the rollover fixture is included.
This procedure is applicable to squeal type noise occurrences for passenger car and light truck type vehicles that are used under conventional operating conditions. For the purposes of this test procedure, squeal is defined as occurring between 900 and 18 000 Hz.
This standard specifies a method for testing and measuring the deflection of friction materials assemblies and compressibility of friction materials. This standard applies to disc brake pad assemblies and its coupons or segments, brake shoe lining and its coupons or segments, and brake blocks segments used in road vehicles. This SAE test method is consistent in intent with the ISO 6310 and the JIS 4413.
This SAE Standard specifies a method for testing and measuring elastic constants in friction materials by precise ultrasonic velocity measurements. Measurement methods are also described for measurement of the out-of-plane modulus as a function of pre-load as well as the measurement of engineering constants as a function of temperature. Finally, methods are formulated to produce all engineering constants as a function of pre-load and temperature.
The purpose of this SAE Recommended Practice is to establish a uniform laboratory procedure for securing and reporting the friction and wear characteristics of brake linings. The performance data obtained can be used for in-plant quality control by brake lining manufacturers and for the quality assessment of incoming shipments by the purchasers of brake linings.
This SAE Recommended Practice covers equipment capabilities and the test procedure to quantify and qualify the shear strength between the friction material and backing plate or brake shoe for automotive applications. This SAE Recommended Practice is applicable to: bonded drum brake linings; integrally molded disc brake pads; disc brake pads and backing plate assemblies using mechanical retention systems (MRS); coupons from drum brake shoes or disc brake pad assemblies. The test and its results are also useful for short, semi-quantitative verification of the bonding and molding process. This Recommended Practice is applicable during product and process development, product verification and quality control. This Recommended Practice does not replicate or predict actual vehicle performance or part durability.
Consideration for the damaging effects to aircraft from the failure of wheels and tires should be evaluated. This document discusses the types of problems in-service aircraft have experienced and methodology in place to assist the designers when evaluating threats for new aircraft design. The purpose of this document is to provide a history of in-service problems, provide a historical summary of the design improvements made to wheels and tires during the past 40 years, and to offer methodology which has been used to help designers assess the threat to ensure the functionality of systems and equipment located in and around the landing gear and in wheel wells.
The purpose of this SAE Aerospace Standard is to provide guidelines for the components and configurations that define the research and commercial versions of the Weather Support to Deicing Decision Making (WSDDM) winter weather nowcasting system.
This aerospace recommended practice includes the type of lubricant to be used, conditions of lubrication, and torque-tension relationship of lock nut and bolts as required for desired preload.
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of an equipment mount device or system when exposed to a frontal or side impact (i.e., a crash impact). Its purpose is to provide equipment manufacturers, ambulance builders, and end users with testing procedures and, where appropriate, acceptance criteria that, to a great extent, ensure equipment mount devices or systems meet the same performance criteria across the industry. Prospective equipment mount manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test setup, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
This SAE Recommended Practice establishes a uniform fluid specification for reference usage in specific documents, such as fluid power component test procedures, where a fluid designation is required.
This document discusses the work done by the U.S. Army Corps of Engineers and the Waterways Experiment Station (WES) in support of SAE A-5 Committee activity on Aerospace Landing Gear Systems. It is an example of how seemingly unrelated disciplines can be combined effectively for the eventual benefit of the overall aircraft system, where that system includes the total airfield environment in which the aircraft must operate. In summary, this AIR documents the history of aircraft flotation analysis as it involves WES and the SAE.
This SAE Aerospace Recommended Practice (ARP) provides guidance for the presentation of gas turbine engine transient performance models with the capacity to be implemented as computer programs operating in real time and is intended to complement AS681. Such models will be used in those applications where a transient program must interface with physical systems. These applications are characterized by the requirement for real time transient response. These models require attention to unique characteristics that are beyond the scope of AS681. This document is intended to facilitate the development of mathematical models and the coordination of their requirements with the user. It will not unduly restrict the modeling methodology used by the supplier. The objective of this document is to define a recommended practice for the delivery of mathematical models intended for real time use. Models used in this application may also be contained in deliverable computer programs covered by AS681.
Items per page:
50
1 – 50 of 212065