Results
This Information Report describes eddy current testing, flux leakage testing, ultrasonic testing, and magnetic particle testing of steel tubing. The purpose of these testing methods is to expose flaws in the tube material or weld zone, such as discontinuities, seams, cracks, holes, voids, and other imperfections characteristic to the specific construction of the tubing. When agreed upon between the producer and purchaser, nondestructive testing is used in lieu of destructive hydrostatic pressure proof testing. Aircraft and Aerospace applications were not considered during the preparation of this document.
This specification covers a premium aircraft-quality, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition (see 8.4) and stock of any size for forging, flash-welded rings, or extrusions.
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4.000 inches (101.60 mm), inclusive, in thickness (see 8.6).
This specification covers a corrosion- and heat-resistant alloy in the form of bars, forgings, flash-welded rings, and stock for forging, flash-welded rings, or heading.
This specification covers a corrosion-resistant steel in the form of investment castings homogenized, solution, and precipitation heat treated to 150 ksi (1034 MPa) minimum tensile strength.
This SAE Standard covers complete general and dimensional specifications for the various types of tube fittings intended for general application in the automotive, appliance, and allied fields. Refer to SAE J1131 for the performance requirements of reusable (push to connect) fittings intended for use in automotive air brake systems. Flare-type fittings shall be as specified in Figures 1 to 4 and Tables 3 to 5. Inverted flared-type fittings shall be as specified in Figures 5 to 11 and Tables 3, 6, 7, 8, and 9. Gauges and gauging procedures pertaining to inverted flared tube fittings are given in Appendix A. Tapered sleeve compression-type fittings intended for general use with annealed copper alloy tubings shall be as specified in Figures 12 to 17 and Tables 3, 10, 11, and 12. To assure satisfactory performance, spherical sleeve compression-type fitting components (refer to SAE J246) should not be intermixed with tapered sleeve compression-type fitting components when assembling
This SAE Standard applies to all combinations of pneumatic tires, wheels, or runflat devices (only as defined in SAE J2013) for military tactical wheeled vehicles only as defined in SAE J2013. This applies to original equipment and new replacement tires, retread tires, wheels, or runflat devices. This document describes tests and test methodology, which will be used to evaluate and measure tire/wheel/runflat system and changes in vehicle performance. All of the tests included in this document are not required for each tire/wheel/runflat assembly. The Government Tire Engineering Office and Program Office for the vehicle system have the responsibility for the selection of a specific test(s) to be used. The selected test(s) should be limited to that required to evaluate the tire/wheel/runflat system and changes in vehicle performance. Selected requirements of this specification shall be used as the basis for procurement of a tire, wheel, and/or runflat device for military tactical wheeled
This SAE Aerospace Recommended Practice (ARP) provides guidance for substantiating the airworthiness of aircraft engine components. Generally, these components are associated with the engine control system, the system or systems that allow the engine to provide thrust or power as demanded by the pilot of the aircraft while also ensuring the engine operates within acceptable operating limits. But these components may also include hardware and systems associated with engine lubrication, engine or aircraft hydraulic or electrical systems, aircraft environmental control systems, thrust reverser control, or similar aircraft or engine propulsion system functions. This paper develops the concept of using a standardized 26-item checklist of environmental conditions for evaluating aircraft engine component airworthiness. This approach is compatible with current practices used in the industry and has been accepted by engine certification authorities in conjunction with other guidance as
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
This SAE Recommended Practice provides laboratory test procedures, requirements, and guidelines for electronic siren systems with a single loudspeaker, and electromechanical sirens for use on authorized emergency vehicles, which call for the right-of-way. Test procedures and performance requirements for individual system components are not included in this version. Results obtained for a siren system with a speaker array that is greater than 0.5 m in any dimension shall apply to the system only when the array is in the same spatial configuration as tested (i.e., the same speaker separation and orientation).
This SAE Standard applies to 145 mm nominal headlamp and floodlamp units.
This SAE Aerospace Standard (AS) establishes the requirements for 24° cone flareless fluid connection fittings and nuts and bite type flareless sleeves for use in aircraft fluid systems at an operating pressure of 5000 psi for the fittings and nuts and 3000 psi for the bite type sleeves.
This SAE AEROSPACE Standard (AS) covers all types of manually operated high pressure Oxygen line shut off valves utilizing either metallic or nonmetallic valve seats for use in general and commercial type aircraft.
This specification covers an aluminum alloy in the form of sheet and plate from 0.020 to 1.000 inch (0.51 to 25.4 mm) thick (see 8.6).
This specification covers one type of bronze in the form of round wire 0.500 inch (12.70 mm) and under in nominal diameter (see 8.5).
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes performance requirements, material requirements, design requirements, and design guidelines for sealed beam headlamps.
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI gasket materials and EMI gaskets against various joint surfaces. The procedure is also used to test the reliability of the gasketed joint combinations after being subjected to hostile environments.
This document provides design guidelines, test procedure references, and performance requirements for stop arm lamp devices on school bus vehicles which are used to alert traffic to stop when passengers are loading and unloading
This specification covers environment-resisting, quick disconnect, EMI/RFI shielded and non-shielded umbilical, electric connectors and adapter assemblies with removable crimp or nonremovable solder-type contacts and accessories. Connectors are rated for operation from -55 °C (-67 °F) to 200 °C (392 °F). Adapter assemblies are rated for operation from -55 °C (-67 °F) to 125 °C (257 °F). The upper temperature is the maximum internal hot spot temperature resulting from any combination of electrical load and ambient temperature.
This SAE Aerospace Recommended Practice (ARP) establishes the minimum recommended Test Stand Setup and Procedures for inspecting and testing Aircraft Refuelers. The inspection and test procedure shall be used to evaluate the operation and performance of an Aircraft Refueler to assure that it meets the minimum refueling performance criteria and is fit for aircraft fueling and/or defueling operations. These procedures shall be used to test new Aircraft Refuelers and may be used to perform routine tests to confirm that the Aircraft Refuelers comply with the minimum performance criteria as specified herein. This document covers all types of Aircraft Refuelers, stationary (e.g., cabinet type units) or mobile (e.g., hydrant service vehicles, tankers, etc.).
This SAE Recommended Practice provides test procedures, requirements, and guidelines for rear cornering lamps for use on vehicles less than 9.1 m in overall length.
This specification covers an aluminum alloy in the form of die forgings 4.000 inches (102 mm) and under in nominal thickness and of forging stock of any size (see 8.7).
This SAE Standard covers unshielded cable, 22 gauge and larger, intended for use at a nominal system voltage up to 600 V or 1000 V (ACrms or DC). It is intended for use in surface vehicle electrical systems.
This specification covers a corrosion and heat resistant nickel alloy in the form of sheet, strip, and plate.
This specification covers a silicone rubber sponge in the form of sheet, strip, extrusions, and molded shapes.
This SAE Recommended Practice was developed by SAE, and the section “Standard Classification and Specification for Service Greases” cooperatively with ASTM and NLGI. It is intended to assist those concerned with the design of automotive components, and with the selection and marketing of greases for the lubrication of certain of those components on passenger cars, trucks, and buses. The information contained herein will be helpful in understanding the terms related to properties, designations, and service applications of automotive greases.
This SAE Recommended Practice establishes a uniform test procedures for on highway trucks equipped with an air-conditioning system used to condition the air in the cabin and sleeper compartment of the vehicle. This specification will apply to heavy trucks with and without sleeper compartments.
This SAE Recommended Practice applies to retroreflective sheeting materials that are used on truck tractors and trailers 2032 mm or more in overall width and with a gross vehicle weight rating (GVWR) over 4536 kg and school buses to improve vehicle conspicuity. The retroreflective sheeting materials for the truck tractors and trailers are super-high-intensity materials containing microprisms. The retroreflective sheeting materials for school buses may contain flexible non-exposed glass bead lenses or microprisms.
Traditional methods of photometry rely on the use of a goniometer to rotate the test item around two axes at right angles. This method is satisfactory for most situations but has certain disadvantages: a Point-by-point measurements with a goniometer may be slow. With more advanced requirements, particularly for headlamps, where the entire beam pattern is of concern, isocandela measurements are becoming increasingly needed. Such testing can be very time consuming. b For production quality assurance, the speed of a goniometer may not allow testing to keep pace with the production line if a large quantity of lamps must be sampled. c High Intensity Discharge (HID) lamps are becoming commonly used. Such lamps are orientation sensitive, changing in both lumen output and intensity distribution when tilted. This can introduce significant inaccuracies in test results when testing is performed using a goniometer. There is a need for alternative test techniques which can achieve very high speed
This SAE Standard provides the minimum requirements for primary and auxiliary jumper cable plug and receptacle for the truck-trailer and converter dolly jumper cable systems for 12 VDC nominal applications. It includes the test procedures, design, and performance requirements.
This SAE Recommended Practice is considered to be tentative and is subject to modification to meet new developments or requirements. It is offered as a guide in the selection and use of cut wire shot.
This specification covers three types and three classes of fuel-resistant polysulfide sealing compound with low specific gravity, supplied as a two-component system which cures at room temperature.
This procedure measures the resistance to radiant heat flow of insulating materials in sleeve, tubing or tape (collectively referred to as “sleeve”) form. The sleeve’s effectiveness (SE) is determined by measuring the difference in surface temperature of a flat black, single-diameter ceramic cylinder with and without the standard diameter sleeve at the specified temperature, position, and distance from the radiant heat source.
This SAE Standard describes snowmobile and snowmobile cutter requirements for the installation of lamps, reflective devices, and associated equipment.
Items per page:
50
1 – 50 of 213475