Results
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
To define a test procedure that will provide repeatable measurements of a vehicle’s maximum acceleration performance for launch and passing maneuvers and standardize time zero used in reported results.
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid-carrying or vapor-carrying component in fuel systems for gasoline, or alcohol blends with gasoline. Requirements in this document also apply to monowall tubing (one layer construction). When the construction has one or more layers of polymer-based compounds in the wall, the multilayer constructions are primarily for the purpose of improvement in permeation resistance to hydrocarbons found in various fuels. The tube construction can have a straight-wall configuration, a wall that is convoluted or corrugated, or a combination of each. It may have an innermost layer with improved electrical conductivity for use where such a characteristic is desired. The improved electrical conductivity can apply to the entire wall construction, if the tubing is a monowall. (For elastomeric based MLT constructions, refer to SAE J30 and SAE J2405). Unless otherwise agreed to by
This SAE Surface Vehicle Recommended Practice deals with electrostatic charge phenomena that may occur in automotive fuel systems and applies to the following: Fuels that are in a liquid state at ambient temperatures and atmospheric pressures and are contained in vehicle fuel tanks that operate at or near atmospheric pressure. This includes gasoline and diesel fuels, as well as their blends with additives such as alcohols, esters, and ethers, whether the additives are petroleum based or bio-fuel based. The group of components that comprise the fuel system (in contact and not in contact with fuels). Other components in proximity to the fuel system that may be affected by electrostatic fields caused by the fuel system. Electrostatic phenomena that arise from, or are affected by, the following aspects of vehicle or fuel system operation: ○ Flowing fuel in the fuel delivery system. ○ Flowing fuel being dispensed to the vehicle while it is being fueled.
This standard describes test methods for insulated, single conductor, electric wire intended for aerospace applications. Particular requirements for the wire being tested need to be specified in a procurement document or other detail specification. Suggested minimum requirements are included in the notes at the end of some of the test methods. SAE Performance Standard AS4372 uses some of the tests in this document for evaluating comparative performance of aerospace wires.
This standard covers jacketed multi-conductor copper data cables for aerospace use.
This specification covers an irradiated, thermally-stabilized, flame-resistant, modified-polyvinylidene-fluoride plastic in the form of extra-thin-wall tubing.
This specification covers polyvinyl chloride insulated single conductor electric wires made with tin-coated copper conductors or silver-coated copper alloy conductors. The polyvinyl chloride insulation of these wires may be used alone or in combination with other insulating or protective materials.
This specification covers concentric lay stranded and rope-lay stranded round electrical conductor fabricated from copper, copper alloy or aluminum. This specification also covers thermocouple extension conductor fabricated from nickel/chromium or nickel/aluminum/manganese. The conductors in this specification are suitable for use in insulated wires used in aerospace and other applications.
This specification covers both insulated and uninsulated solid conductor wire, designed for solderless wrap connections in electrical and electronic devices and equipment. The terminations of the wire are intended to be made with hand or automatic tools which wrap the wire, under tension, around terminal pins (commonly called wrapposts) to form solderless wrapped connections.
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
The purpose of this document is to present general considerations for the design and use of aircraft wheel chocks. The design and use of aircraft wheel chocks is a good deal more complicated than it may appear at first glance.
This SAE Aerospace Recommended Practice (ARP) is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
This specification covers a premium aircraft-quality alloy steel in the form of welding wire.
This SAE Information Report is intended to provide users and producers of metallic shot and grit2 with general information on methods of mechanically testing metal shot in the laboratory.
ARP1834 provides general guidance for the selection, approach to, and performance of various kinds of F/FA of digital systems and equipment. Its prime objective is to present several industry-acceptable, cost-effective methods for identifying, analyzing, and documenting digital-equipment failure modes and their effects. The analysis techniques and considerations presented here are directed to digital-equipment hardware faults and failures exclusively. ARP1834 is not intended as an exhaustive treatment of the enormously complex process involved in the analytical failure evaluation of complete digital systems, nor as a universally applicable, definitive listing of the necessary and sufficient steps and actions for such evaluation. ARP4761 provides updated methods and processes for use on civil aircraft safety assessment. When analyzing these types of systems, ARP4761 should be used in lieu of this ARP. ARP1834 addresses the following areas of consideration in the preparation and
This specification covers characteristics for chemistry, microstructure, density, hardness, size, shape, and appearance of zirconium oxide-based ceramic shot, suitable for peening surfaces of parts by impingement.
This recommended practice defines methods for the measurement of periodic, random and transient whole-body vibration. It indicates the principal factors that combine to determine the degree to which a vibration exposure will cause discomfort. Informative appendices indicate the current state of knowledge and provide guidance on the possible effects of motion and vibration on discomfort. The frequency range considered is 0.5 Hz to 80 Hz. This recommended practice also defines the principles of preferred methods of mounting transducers for determining human exposure. This recommended practice is applicable to light passenger vehicles (e.g., passenger cars and light trucks). This recommended practice is applicable to motions transmitted to the human body as a whole through the buttocks, back and feet of a seated occupant, as well as through the hands of a driver. This recommended practice offers a method for developing a ride performance index but does not specifically describe how to
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration that is functionally similar to MIL-STD-1553B with Notice 2 but with a star topology and some deleted functionality. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
This document provides guidance in performing Failure/Fault Analyses in relatively low complexity systems. Methodologies and processes are presented and described for accomplishing Failure/Fault Analyses. ARP4761 provides updated methods and processes for use on civil aircraft safety assessment. When analyzing these types of systems, ARP4761 should be used in lieu of this ARP.
"Effective particle or domain size" is a phrase used in X-ray diffraction literature to describe the size of the coherent regions within a material which are diffracting. Coherency in this sense means diffracting as a unit. Small particle size causes X-ray line broadening and as such can be measured. It has been shown related to substructure as observed in transmission electron microscopy. Particle size is affected by hardening, cold working, and fatigue; conversely, there is increasing evidence that particle size, per se, affects both static and dynamic strength.
Items per page:
50
1 – 50 of 211724