Search
Advanced Search
of the following are true
(
)

Results

Items (211,724)
The purpose of this document is to provide a standard for aircraft fuselage markings located at the doors used for ground servicing operations. These markings can be used by all GSE that will dock at the aircraft. These markings may be used for one or several phases of the GSE positioning relative to the aircraft process: GSE alignment during approach, GSE final docking, and GSE auto leveling. It is not the purpose of this standard to describe the different technologies, cameras, or other equipment that can be mounted on GSE to utilize these markings. The aircraft that may use these markings will have a fuselage diameter of 3 m or more.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
AGE-3 Aircraft Ground Support Equipment Committee
This standard describes test methods for insulated, single conductor, electric wire intended for aerospace applications. Particular requirements for the wire being tested need to be specified in a procurement document or other detail specification. Suggested minimum requirements are included in the notes at the end of some of the test methods. SAE Performance Standard AS4372 uses some of the tests in this document for evaluating comparative performance of aerospace wires.
AE-8D Wire and Cable Committee
This standard covers jacketed multi-conductor copper data cables for aerospace use.
AE-8D Wire and Cable Committee
This specification covers an irradiated, thermally-stabilized, flame-resistant, modified-polyvinylidene-fluoride plastic in the form of extra-thin-wall tubing.
AE-8D Wire and Cable Committee
This specification covers polyvinyl chloride insulated single conductor electric wires made with tin-coated copper conductors or silver-coated copper alloy conductors. The polyvinyl chloride insulation of these wires may be used alone or in combination with other insulating or protective materials.
AE-8D Wire and Cable Committee
This specification covers concentric lay stranded and rope-lay stranded round electrical conductor fabricated from copper, copper alloy or aluminum. This specification also covers thermocouple extension conductor fabricated from nickel/chromium or nickel/aluminum/manganese. The conductors in this specification are suitable for use in insulated wires used in aerospace and other applications.
AE-8D Wire and Cable Committee
This specification covers both insulated and uninsulated solid conductor wire, designed for solderless wrap connections in electrical and electronic devices and equipment. The terminations of the wire are intended to be made with hand or automatic tools which wrap the wire, under tension, around terminal pins (commonly called wrapposts) to form solderless wrapped connections.
AE-8D Wire and Cable Committee
To define a test procedure that will provide repeatable measurements of a vehicle’s maximum acceleration performance for launch and passing maneuvers and standardize time zero used in reported results.
Light Duty Vehicle Performance and Economy Measure Committee
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid-carrying or vapor-carrying component in fuel systems for gasoline, or alcohol blends with gasoline. Requirements in this document also apply to monowall tubing (one layer construction). When the construction has one or more layers of polymer-based compounds in the wall, the multilayer constructions are primarily for the purpose of improvement in permeation resistance to hydrocarbons found in various fuels. The tube construction can have a straight-wall configuration, a wall that is convoluted or corrugated, or a combination of each. It may have an innermost layer with improved electrical conductivity for use where such a characteristic is desired. The improved electrical conductivity can apply to the entire wall construction, if the tubing is a monowall. (For elastomeric based MLT constructions, refer to SAE J30 and SAE J2405). Unless otherwise agreed to by
Fuel Systems Standards Committee
This document specifically pertains to cybersecurity for vehicles. It has been developed by SAE International (SAE) Committee Technical Committee on Vehicle Electrical and Electronic Systems, “Cybersecurity Testing Task Force,” a subcommittee of SAE Committee, “Vehicle Cybersecurity Systems Engineering Committee.” This committee is authorized under the scope and authority of the SAE Electronic Design Automation Steering Committee, which is organized under the scope and authority of the SAE Electrical Systems Committee (also known as the Electrical Systems Group), which is directly under the scope and authority of the SAE Motor Vehicle Council. The SAE Motor Vehicle Council’s stated scope of influence and authority, as defined by SAE, includes, “passenger car and light truck.” By definition, this excludes motorcycles, certain trailers, heavy trucks, buses, snowmobiles, watercraft, marine vessels, off-road, multi-purpose vehicles, certain other specialty vehicles, and aircraft.
Vehicle Cybersecurity Systems Engineering Committee
This recommended practice is intended to provide general guidelines for the selection and proper use of technologies and methods intended to minimize the risk of exposure to infection through light-duty vehicle cabin air. It is not intended to include all aspects of cabin air quality, including odor, inorganic particulates, volatile organic compounds (VOCs), etc.
Cabin Disinfection Practices Committee
This SAE Surface Vehicle Recommended Practice deals with electrostatic charge phenomena that may occur in automotive fuel systems and applies to the following: Fuels that are in a liquid state at ambient temperatures and atmospheric pressures and are contained in vehicle fuel tanks that operate at or near atmospheric pressure. This includes gasoline and diesel fuels, as well as their blends with additives such as alcohols, esters, and ethers, whether the additives are petroleum based or bio-fuel based. The group of components that comprise the fuel system (in contact and not in contact with fuels). Other components in proximity to the fuel system that may be affected by electrostatic fields caused by the fuel system. Electrostatic phenomena that arise from, or are affected by, the following aspects of vehicle or fuel system operation: ○ Flowing fuel in the fuel delivery system. ○ Flowing fuel being dispensed to the vehicle while it is being fueled.
Fuel Systems Standards Committee
This SAE Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools, and publications related to active safety systems. This information report is a survey of terms related to calibration of active safety systems. The definitions offered are descriptions of inputs, outputs, and processes rather than technical specifications. Definitions for end-of-line procedures are not included.
Active Safety and Driver Support Systems Standards Committee
The current document is a part of an effort of the Active Safety Systems Committee, Active Safety Systems Sensors Task Force whose objectives are to: a Identify the functionality and performance you could expect from active safety sensors b Establish a basic understanding of how sensors work c Establish a basic understanding of how sensors can be tested d Describe an exemplar set of acceptable requirements and tests associated with each technology e Describe the key requirements/functionality for the test targets f Describe the unique characteristics of the targets or tests This document will cover items (a) and (b).
Active Safety and Driver Support Systems Standards Committee
This document describes an SAE Recommended Practice for Automatic Emergency Braking (AEB) system performance testing which: Establishes uniform vehicle level test procedures Identifies target equipment, test scenarios, and measurement methods Identifies and explains the performance data of interest Does not exclude any particular system or sensor technology Identifies the known limitations of the information contained within (assumptions and “gaps”) Is intended to be a guide toward standard practice and is subject to change on pace with the technology Focuses on “Vehicle Front to Rear, In Lane Scenarios” expanded to include additional offset impacts This document describes the equipment, facilities, methods, and procedures needed to evaluate the ability of Automatic Emergency Braking (AEB) systems to detect and respond to another vehicle, in its forward path, as it is approached from the rear. This document does not specify test conditions (e.g., speeds, decelerations, clearance gaps
Active Safety and Driver Support Systems Standards Committee
This SAE Recommended Practice establishes a test procedure for the evaluation of lane departure warning (LDW), lane keeping assistance (LKA), and lane centering assistance systems used in passenger vehicles and light trucks. This test procedure does not intend to exclude any particular system or sensing technology. The recommended practice can be used to test the functionality and performance of LDW, LKA, and lane centering assistance systems by assessing their ability to (1) warn (LDW) or control (LKA, lane centering assistance) in response to an unintended lane departure, and (2) the ability to indicate a system disengagement. The human machine interface (HMI) is not addressed herein but is considered in SAE J2808. The recommended practice specifies lane markers to enable lane departure testing, or road edges, to enable testing of road departure mitigation systems. The document is separated into two tiers. Tier One establishes a recommended minimum set of performance criteria for LDW
Active Safety and Driver Support Systems Standards Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
This glossary provides accepted definitions for terms commonly used by manufacturers and users of electric wire and cable, and their components, intended for use on aerospace vehicles.
AE-8D Wire and Cable Committee
This SAE Aerospace Information Report (AIR) is limited to information about evaluation of a new cadmium-free high-strength copper alloy. The testing described in this AIR was conducted prior to the publication of AS6324 and is intended to provide information regarding evaluation of this new copper alloy. It is recognized that a simple specification such as AS29606 can not cover all possible requirements for performance in every field application. To address this basic issue, the introduction of a new, but similar to already field proven, component requires comparative testing to verify the new component will perform at the same or above level as the already approved component in a broader set of relevant tests.
AE-8D Wire and Cable Committee
Items per page:
1 – 50 of 211724