Search
Advanced Search
of the following are true
(
)

Results

Items (211,724)
The purpose of this document is to provide a standard for aircraft fuselage markings located at the doors used for ground servicing operations. These markings can be used by all GSE that will dock at the aircraft. These markings may be used for one or several phases of the GSE positioning relative to the aircraft process: GSE alignment during approach, GSE final docking, and GSE auto leveling. It is not the purpose of this standard to describe the different technologies, cameras, or other equipment that can be mounted on GSE to utilize these markings. The aircraft that may use these markings will have a fuselage diameter of 3 m or more.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) provides requirements for design and installation of aircraft jacking pad adapters and the mating jack socket interface to permit use of standard jacking equipment to be used in civil and military transport aircraft. The adapter defined herein shall be the key interface between the aircraft and the aircraft jack(s).
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
Engine Power Test Code Committee
This SAE Aerospace Informatino Report (AIR) focuses on how long-term exposure of high voltage below and above wire insulation corona inception voltage (CIV) impacts round wire insulation life. This AIR will be updated when additional data is available.
AE-8D Wire and Cable Committee
This data dictionary provides definitions for quantities, measurement units, reference systems, measurands, measurements, and quantity modalities commonly used in the command and control of cyber-physical systems. A cyber-physical system is an engineered system that is built from, and depends upon, the seamless integration of computational algorithms and physical components. Cyber-physical systems are often interconnected via data links and networks. The term encompasses intelligent vehicles and devices that operate in any environment, including robotic and autonomous systems.
AS-4 Unmanned Systems Committee
The chemistry identification system is intended to support the proper and efficient recycling of rechargeable battery systems used in transportation applications with a maximum voltage greater than or equal to 12 V. These applications include propulsion, starting/lighting/ignition, and providing power to other vehicle equipment. Other battery systems such as non-rechargeable batteries, batteries in electronics, and telecom/utility batteries are not considered in the development of this specification. This does not preclude these systems from adapting the format proposed if they so choose.
Battery Standards Recycling Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation. It is important to note that this specification is not designed to be stand-alone; several requirements leave the details to the implementations and delegate the actual implementation to be specified by the network architect/integrator for a
AS-1A Avionic Networks Committee
This specification covers procedures for sampling and testing aircraft-quality, special aircraft-quality, and premium aircraft-quality steels requiring transverse tensile property testing.
AMS E Carbon and Low Alloy Steels Committee
This SAE Recommended Practice establishes consistent test procedures for determination of steady-state directional control properties for passenger cars and light trucks with two axles. These properties include the steering-wheel angle gradient, reference steer angle gradient, sideslip angle gradient, vehicle roll angle gradient, and steering-wheel torque gradient with respect to lateral acceleration. They also include the yaw velocity gain, lateral acceleration gain, and sideslip angle gain with respect to steering-wheel angle. Additionally, the characteristic or critical speed and the front and rear wheel steer compliances may be determined.
Vehicle Dynamics Standards Committee
This SAE Aerospace Recommended Practice (ARP) describes a two-pole electric connector for use in battery powered ground support equipment, i.e., traction batteries. Alternatively, the connector can have two or more auxiliary contacts for auxiliary circuits. A handle may be added as an option to assist in connecting and disconnecting.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) specifies dimensional and physical requirements of tow bar connections to tractor and aircraft (see Figure 1). It is applicable to all types of commercial transport category aircraft tow bar. The purpose of this SAE Aerospace Recommended Practice (ARP) is to standardize tow bar attachments to airplane and tractor according to the mass category of the towed aircraft, so that one tow bar head with different shear levels can be used for all aircraft that are within the same mass category and are manufactured in compliance with AS1614 or ISO 8267.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Information Report (AIR) is intended to cover all airport 50 or 60 Hz electrical systems as well as all electrical utilization equipment that is attached to those systems.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) defines interface configurations for the ground air conditioning service connection on commercial transport aircraft. In addition, it defines the clearances required to accommodate the connection of ground air conditioning hose couplings. Two types of service connections are included. The Type A connection (Figure 1) is a slotted ring with integral locking pads and is comparable to the MS33562 connection. The Type B connection (Figure 2) is a flanged tube with external locking lugs (Figure 3). The Type B connection has the same interface dimensional requirements as the Type A connection.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) is applicable to any type of aerospace ground support vehicle, powered or unpowered.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Standard (AS) specifies the interface requirements for tow bar attachment fittings on the nose gear (when towing operations are performed from the nose gear) of conventional tricycle type landing gears of commercial civil transport aircraft with a maximum ramp weight higher than 50,000 kg (110,000 pounds), commonly designated as “main line aircraft”. Its purpose is to achieve tow bar attachment fittings interface standardization by aircraft weight category (which determines tow bar forces) in order to ensure that one single type of tow bar with a standard connection can be used for all aircraft types within or near that weight category, so as to assist operators and airport handling companies in reducing the number of different tow bar types used.
AGE-3 Aircraft Ground Support Equipment Committee
The following recommendations and suggestions are made for consideration for procurement of new equipment, or modification to existing equipment where practical. Excluded from this AIR is mobile ground equipment, such as fork lift trucks and front end loaders, that have a functional requirement for simultaneous vehicle motion and accessory operation.
AGE-3 Aircraft Ground Support Equipment Committee
This document is a guideline for format, structure and content for ground support equipment (GSE) technical manuals. This document focuses on requirements specific to the GSE industry and does not cover general technical publication practices. Additional standards for GSE and for manufacturer’s publications exist and may add requirements beyond what is covered in this standard. This may include EU Directive 2006/42/EC. This document is written in specific terms by intention, and conforms to recognized practices in the industry. When the word SHALL is used in this standard, it indicates a requirement that must be adhered to in total and does not allow for variance. When the word SHOULD is used, it indicates a recommended practice which allows the manual writer to use discretionary judgment. This document does not apply to electronic test equipment.
AGE-3 Aircraft Ground Support Equipment Committee
This Aerospace Information Report (AIR) is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers. Although the design engineers could also use the formulas and data in their calculations of the performance specifications of aircraft tow tractors, this AIR is not intended to provide the methods and all data necessary for detailed calculations and design of an aircraft tow tractor.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) outlines the design and functional requirements for aircraft passenger lifts, operated manually and self-propelled. The primary function of the lift described in this document is to act as an elevator between ground level and aircraft doorsills to a maximum of 144 in.
AGE-3 Aircraft Ground Support Equipment Committee
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a b self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with.
AGE-3 Aircraft Ground Support Equipment Committee
The purpose of this specification is to provide airplane operators and tow vehicle manufacturers with: a General design and operating requirements pertinent to test and evaluation of towbarless tow vehicles. Specific design requirements are provided in ARP4852 and ARP4853. b Test and evaluation requirements. The results of these test evaluations will determine if the loads induced by the tow vehicle will exceed the design loads of the nose gear, or are within the aircraft manufacturer’s limits so that they do not affect the certified safe limit of the nose gear. The results of these test evaluations will also determine if a stability problem may occur during pushback and/or maintenance towing operations with the tested airplane/tow vehicle combination. This document specifies general test requirements and a test evaluation procedure for towbarless tow vehicles (TLTV) intended for pushback and maintenance towing only. It is not meant for dispatch (operational) towing (see definitions in
AGE-3 Aircraft Ground Support Equipment Committee
Items per page:
1 – 50 of 211724