Search
Advanced Search
of the following are true
(
)

Results

Items (215,704)
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide recommendations which will lead to the standardization of interior door design and operation in all transport aircraft. Interior doors are broadly classified into two main categories which include egress path doors and non-egress path doors. The scope of this ARP does not include crew rest doors, secondary barriers to the flight deck, or doors incorporated in furniture surrounding passenger seats as defined in AS6960.
S-9B Cabin Interiors and Furnishings Committee
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
AMS F Corrosion and Heat Resistant Alloys Committee
This SAE Recommended Practice provides minimum performance requirements and uniform procedures for fatigue testing of wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles. For heavy truck wheels and wheels intended to be used as duals, refer to SAE J267. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. These minimum performance requirements apply only to wheels made of materials included in Tables 1 to 4. The minimum cycles noted in Tables 1 through 4 are to be used on individual test and a sample of tests conducted, with Weibull Statistics using two parameter, median ranks, 50% confidence level, and 90% reliability, typically noted as B10C50.
Wheel Standards Committee
These general guidelines and precautions apply to personnel operating directional drilling tracking equipment when used with horizontal directional drilling (HDD) machines as defined in ISO 21467:2023.
MTC9, Trenching and Horizontal Earthboring Machines
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Glass and materials inclusive to the light source are not in scope for this method.
Lighting Materials Standards Committee
This SAE lab test procedure should be used when performing the following specialized weathering tests for wheels; Florida Exposure, QUV, Xenon and Carbon Weatherometer. In addition to these procedures, some additional post-weathering tests may be specified. Please refer to customer specifications for these requirements.
Wheel Standards Committee
E-25 General Standards for Aerospace and Propulsion Systems
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities.
EG-1E Gas Turbine Test Facilities and Equipment
This specification covers a heat-treatable, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and stock for forging or heading.
AMS F Corrosion and Heat Resistant Alloys Committee
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Standard (AS) establishes the requirements for AS3504 and AS3505 thin wall self-locking inserts made from a corrosion and heat resistant, age hardenable nickel base alloy of the type identified under the Unified Numbering System as UNS N07718.
E-25 General Standards for Aerospace and Propulsion Systems
This specification covers an aluminum alloy in the form of Alclad sheet and plate 0.040 to 1.000 inch, inclusive (1.02 to 25.40 mm, inclusive) in nominal thickness (see 8.5).
AMS D Nonferrous Alloys Committee
This document discusses, in broad and general terms, the subject of acoustical considerations in engine test cells. One of the primary purposes of an engine test cell is to control the noise emanating from the operating engine in order to reduce noise in the surrounding facility and community to acceptable levels. This is done by the design and installation of specialized acoustic elements and features, which need to be fully integrated into the overall test cell design. It should be further noted that the requirements of acoustic control are critical to the proper operation of the engine, safety of plant equipment and personnel, and meeting local and legal noise requirements.
EG-1E Gas Turbine Test Facilities and Equipment
This report, in conjunction with other referenced SAE documents, provides recommendations for development of aircraft cabin pressure control systems and equipment, with particular emphasis on performance objectives, requirements definition, operational scenarios, design practices, safety processes, and verification methods. The objective of a Cabin Pressure Control System (CPCS) is to regulate aircraft cabin pressure throughout the operational flight envelope, in order to ensure occupant safety, aircraft safety, and passenger comfort. The system should comply with all relevant certification and safety requirements, particularly in the areas of: Maintaining a breathable environment within occupied compartments Protecting the fuselage structure against excessive positive and negative differential pressure loads Supporting cabin egress on ground The system should have the capability to schedule cabin pressure at rates of change that are comfortable to crew and passengers. Careful
AC-9 Aircraft Environmental Systems Committee
This procurement specification covers inserts made from A286 alloy (UNS S66286) which have self-locking internal threads and integrated locking keys to positively secure the insert against rotation when properly installed in threaded holes.
E-25 General Standards for Aerospace and Propulsion Systems
This document addresses AS8879 thread inspection issues relating to selection, usage and capability of gages. It addresses the selection of calibrated measurement gages, the need for defined quality metrics, the methodology of determining the appropriate guardband factors, and the minimum inspection requirements for single element pitch diameter gages. Users of this document shall apply the information described herein for the evaluation of the capability of their measurements based on the measurement consumer risk. It involves the analysis of the measurement (product) distribution and biases of both the product and measurement system distributions. It protects the consumer from the worst case distribution results. A whitepaper has been developed to provide supporting documentation and the rationale used in the development of this standard. This whitepaper will be published by the SAE as an Aerospace Information Report (AIR6553). This document recommends the use of ASME B1.2 “Gages and
E-25 General Standards for Aerospace and Propulsion Systems
This SAE Aerospace Standard (AS) specifies the inside diameters, cross-sections, tolerances, and size identification codes (dash numbers) for O-rings used in sealing applications and for straight thread tube fitting boss gaskets. The dimensions and tolerances specified in this standard are suitable for any elastomeric material provided that suitable tooling is available.
A-6C2 Seals Committee
This specification covers one weight and one strength of intermediate modulus aramid cloth.
AMS P17 Polymer Matrix Composites Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate 1.00 inch (25.4 mm) and under in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of welding wire (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a copper alloy (naval brass) in the form of bars and rods (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion-resistant steel in the form of seamless or welded tubing.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a premium-aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers the requirements for electroless nickel with phosphorus deposited on various materials.
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 0.499 inch (0.50 to 12.50 mm), inclusive, in nominal thickness, clad on two sides (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a butyl (IIR) rubber in the form of sheet, strip, tubing, extrusions, and molded shapes.
AMS CE Elastomers Committee
SAE J1979/ISO 15031-5 set includes the communication between the vehicle’s OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD. To achieve this, it is based on the Open Systems Interconnection (OSI) Basic Reference Model in accordance with ISO/IEC 7498-1 and ISO/IEC 10731, which structures communication systems into seven layers. When mapped on this model, the services specified are broken into: — Diagnostic services (layer 7), specified in: — ISO 15031-5/SAE J1979 (emissions-related OBD), — ISO 27145-3 (WWH-OBD), — Presentation layer (layer 6), specified in: — ISO 15031-2, SAE J1930-DA, — ISO 15031-5, SAE J1979-DA, — ISO 15031-6, SAE J2012-DA, — ISO 27145-2, SAE J2012-DA, — Session layer services (layer 5), specified in: — ISO 14229-2 supports ISO 15765-4 DoCAN and ISO 14230-4 DoK-Line protocols, — ISO 14229-2 is not applicable to the SAE J1850 and ISO 9141-2 protocols, — Transport layer services (layer 4), specified in
Vehicle E E System Diagnostic Standards Committee
This document provides a review of published methods that have been used to provide estimates of the levels of distortion and/or the concomitant loss of stability pressure ratio that can occur when the recommended full complement of aerodynamic interface plane high-response instrumentation is not used when obtaining inlet data. The methods have been categorized based on the underlying mathematical representation of the aerophysics. Further, the use of maximum value statistics, which has been used to further improve the results where short-duration time records have been employed, is discussed.
S-16 Turbine Engine Inlet Flow Distortion Committee
This specification covers an acrylonitrile-butadiene (NBR) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. For molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications, use the AMS-P-83461 specification or the MIL-PRF-25732 specification.
AMS CE Elastomers Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers virgin, unfilled polytetrafluoroethylene (PTFE) in the form of sheet manufactured by compression molding and sintering.
AMS P Polymeric Materials Committee
Items per page:
1 – 50 of 215704