Results
This SAE lab test procedure should be used when performing the following specialized weathering tests for wheels; Florida Exposure, QUV, Xenon and Carbon Weatherometer. In addition to these procedures, some additional post-weathering tests may be specified. Please refer to customer specifications for these requirements.
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Glass and materials inclusive to the light source are not in scope for this method.
This SAE Recommended Practice provides minimum performance requirements and uniform procedures for fatigue testing of wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles. For heavy truck wheels and wheels intended to be used as duals, refer to SAE J267. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. These minimum performance requirements apply only to wheels made of materials included in Tables 1 to 4. The minimum cycles noted in Tables 1 through 4 are to be used on individual test and a sample of tests conducted, with Weibull Statistics using two parameter, median ranks, 50% confidence level, and 90% reliability, typically noted as B10C50.
These general guidelines and precautions apply to personnel operating directional drilling tracking equipment when used with horizontal directional drilling (HDD) machines as defined in ISO 21467:2023.
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide recommendations which will lead to the standardization of interior door design and operation in all transport aircraft. Interior doors are broadly classified into two main categories which include egress path doors and non-egress path doors. The scope of this ARP does not include crew rest doors, secondary barriers to the flight deck, or doors incorporated in furniture surrounding passenger seats as defined in AS6960.
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities.
This specification covers a heat-treatable, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and stock for forging or heading.
This specification covers an aluminum alloy in the form of Alclad sheet and plate 0.040 to 1.000 inch, inclusive (1.02 to 25.40 mm, inclusive) in nominal thickness (see 8.5).
This SAE Aerospace Standard (AS) establishes the requirements for AS3504 and AS3505 thin wall self-locking inserts made from a corrosion and heat resistant, age hardenable nickel base alloy of the type identified under the Unified Numbering System as UNS N07718.
This document discusses, in broad and general terms, the subject of acoustical considerations in engine test cells. One of the primary purposes of an engine test cell is to control the noise emanating from the operating engine in order to reduce noise in the surrounding facility and community to acceptable levels. This is done by the design and installation of specialized acoustic elements and features, which need to be fully integrated into the overall test cell design. It should be further noted that the requirements of acoustic control are critical to the proper operation of the engine, safety of plant equipment and personnel, and meeting local and legal noise requirements.
This standard defines the common nonconformity data definition and documentation that shall be exchanged between an internal/external supplier or sub-tier supplier, and the customer when informing about a nonconformity requiring formal decision. The requirements are applicable, partly or totally, when reporting a product nonconformity to the owner or operator, as user of the end item (e.g., engine, aircraft, spacecraft, helicopter), if specified by contract. Reporting of nonconformity data, either electronically or conventionally on paper, is subject to the terms and conditions of the contract. This also includes, where applicable, data access under export control regulations.
This document recommends and sets forth a set of symbols representing the components making up aircraft fuel and oil systems. The intended result is uniformity in system schematics so that they may be easily understood throughout the aerospace industry.
SAE J1939-73 defines the SAE J1939 messages to accomplish diagnostic services and identifies the diagnostic connector to be used for the vehicle service tool interface. Diagnostic messages (DMs) provide the utility needed when the vehicle is being repaired. Diagnostic messages are also used during vehicle operation by the networked electronic control modules to allow them to report diagnostic information and self-compensate as appropriate, based on information received. Diagnostic messages include services such as periodically broadcasting active diagnostic trouble codes, identifying operator diagnostic lamp status, reading or clearing diagnostic trouble codes, reading or writing control module memory, providing a security function, stopping/starting message broadcasts, reporting diagnostic readiness, monitoring engine parametric data, etc. California-, EPA-, or EU-regulated OBD requirements are satisfied with a subset of the specified connector and the defined messages.
The purpose of this SAE Recommended Practice is to verify that vehicles and/or components are capable of communicating a required set of information, which is described by the diagnostic messages specified in SAE J1939-73, that is in accordance with off-board diagnostic tool interface requirements contained in the government regulations cited below. This document describes the tests, methods, and results for verifying diagnostic communications from an off-board diagnostic tool (i.e., scan tool) to a vehicle and/or component. SAE members have generated this document to serve as a guide for testing vehicles for compliance with ARB and other requirements for emissions-related on-board diagnostic (OBD) functions for heavy-duty engines used in medium- and heavy-duty vehicles. The development of HD OBD regulations by U.S. EPA and California’s Air Resources Board (ARB) require that diagnostic message services are exercised to evaluate diagnostic communication standardization requirements on
The SAE J1939 communications network is developed for use in heavy-duty environments and is suitable for horizontally integrated vehicle industries. The SAE J1939 communications network is applicable for light-duty, medium-duty, and heavy-duty vehicles used on-road or off-road, and for appropriate stationary applications which use vehicle-derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on-highway and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements. SAE J1939-71 is the SAE J1939 reference document describing SAE J1939 parameter (SP) and message (PG) definitions, SLOT (standard data encoding) definitions, conventions and notations used to specify the parameter (SP) placement in PG data, conventions for text data parameters, and conventions for PG transmission rates. This document previously contained the majority of the SAE J1939 OSI application layer data parameters and messages for
This specification covers a copper-beryllium alloy in the form of bars and rods (see 8.5).
This document covers the recommended lighting performance and design criteria for: Left Forward Navigation Position Lights (Red) Right Forward Navigation Position Lights (Green) Rear Navigation Position Lights (White) Anticollision Lights. AS8017 provides for the following classes: Class I Rotorcraft, Class II Fixed Wing, and Class III Fixed Wing and Rotorcraft. Possible design requires include but are not limited to: Red Flashing Lights Top and Bottom Fuselage White Flashing Strobe Lights Wing Tips and/or Tail Red Flashing Beacon Light on Top of Vertical Tail
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied) and in gear. For illustrative purposes, some typical transmissions are shown.
Items per page:
50
1 – 50 of 215705