Results
This SAE Recommended Practice provides minimum performance requirements and uniform procedures for fatigue testing of wheels intended for normal highway use and temporary use on passenger cars, light trucks, and multipurpose vehicles. For heavy truck wheels and wheels intended to be used as duals, refer to SAE J267. For wheels used on trailers drawn by passenger cars, light trucks, or multipurpose vehicles, refer to SAE J1204. These minimum performance requirements apply only to wheels made of materials included in Tables 1 to 4. The minimum cycles noted in Tables 1 through 4 are to be used on individual test and a sample of tests conducted, with Weibull Statistics using two parameter, median ranks, 50% confidence level, and 90% reliability, typically noted as B10C50.
This specification covers a corrosion- and heat-resistant steel in the form of welding wire.
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide recommendations which will lead to the standardization of interior door design and operation in all transport aircraft. Interior doors are broadly classified into two main categories which include egress path doors and non-egress path doors. The scope of this ARP does not include crew rest doors, secondary barriers to the flight deck, or doors incorporated in furniture surrounding passenger seats as defined in AS6960.
These general guidelines and precautions apply to personnel operating directional drilling tracking equipment when used with horizontal directional drilling (HDD) machines as defined in ISO 21467:2023.
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment. Glass and materials inclusive to the light source are not in scope for this method.
This SAE lab test procedure should be used when performing the following specialized weathering tests for wheels; Florida Exposure, QUV, Xenon and Carbon Weatherometer. In addition to these procedures, some additional post-weathering tests may be specified. Please refer to customer specifications for these requirements.
This specification covers a heat-treatable, corrosion-resistant steel in the form of bars, wire, forgings, mechanical tubing, and stock for forging or heading.
This SAE Aerospace Standard (AS) establishes the requirements for AS3504 and AS3505 thin wall self-locking inserts made from a corrosion and heat resistant, age hardenable nickel base alloy of the type identified under the Unified Numbering System as UNS N07718.
This SAE Aerospace Recommended Practice (ARP) is written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in constructing new or adding to existing engine test cell facilities.
This specification covers an aluminum alloy in the form of Alclad sheet and plate 0.040 to 1.000 inch, inclusive (1.02 to 25.40 mm, inclusive) in nominal thickness (see 8.5).
This document discusses, in broad and general terms, the subject of acoustical considerations in engine test cells. One of the primary purposes of an engine test cell is to control the noise emanating from the operating engine in order to reduce noise in the surrounding facility and community to acceptable levels. This is done by the design and installation of specialized acoustic elements and features, which need to be fully integrated into the overall test cell design. It should be further noted that the requirements of acoustic control are critical to the proper operation of the engine, safety of plant equipment and personnel, and meeting local and legal noise requirements.
This report, in conjunction with other referenced SAE documents, provides recommendations for development of aircraft cabin pressure control systems and equipment, with particular emphasis on performance objectives, requirements definition, operational scenarios, design practices, safety processes, and verification methods. The objective of a Cabin Pressure Control System (CPCS) is to regulate aircraft cabin pressure throughout the operational flight envelope, in order to ensure occupant safety, aircraft safety, and passenger comfort. The system should comply with all relevant certification and safety requirements, particularly in the areas of: Maintaining a breathable environment within occupied compartments Protecting the fuselage structure against excessive positive and negative differential pressure loads Supporting cabin egress on ground The system should have the capability to schedule cabin pressure at rates of change that are comfortable to crew and passengers. Careful
This SAE Aerospace Standard (AS) specifies the inside diameters, cross-sections, tolerances, and size identification codes (dash numbers) for O-rings used in sealing applications and for straight thread tube fitting boss gaskets. The dimensions and tolerances specified in this standard are suitable for any elastomeric material provided that suitable tooling is available.
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
This specification covers the requirements for silver deposited on metal parts with a copper strike between the basis metal and the silver deposit.
This procurement specification covers all metal, self-locking wrenching nuts, plate nuts, shank nuts, and gang channel nuts made of a corrosion and heat resistant nickel-base alloy of the type identified under the Unified Numbering System as UNS N07001.
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
This document covers all metal, self-locking wrenching nuts, plate nuts, shank nuts, and gang channel nuts made from a corrosion and heat resistant steel of the type identified under the Unified Numbering System as UNS S66286 and of 160 ksi tensile strength at room temperature, with maximum test temperature of parts at 1200 °F.
SAE J1978-2 specifies a complementary set of functions to be provided by an OBD-II scan tool. These functions provide complete, efficient access to all regulated OBD services on any vehicle that is compliant with SAE J1979-2 and SAE J1979-3. The content of this document is intended to satisfy the requirements of an OBD-II scan tool as required by current U.S. OBD regulations. This document specifies: A means of establishing communications between an OBD-equipped vehicle and an OBD-II scan tool. A set of diagnostic services to be provided by an OBD-II scan tool in order to exercise the services defined in SAE J1979-2 and SAE J1979-3. In addition, SAE J1978-1 covers first generation protocol functionality defined in SAE J1979 plus automatic protocol determination for all SAE J1979/J1979-2/J1979-3 application content. The presentation of the SAE J1978 document family, where SAE J1978-2 covers second generation protocol functionality defined in SAE J1979-2 and SAE J1979-3, and SAE J1978-1
This specification covers a corrosion and heat-resistant steel in the form of investment castings.
This document is intended to define the standardized Diagnostic Trouble Codes (DTCs) that On-Board Diagnostic (OBD) systems in vehicles are required to report when malfunctions are detected. SAE J2012 may also be used for decoding of enhanced diagnostic DTCs and specifies the ranges reserved for vehicle manufacturer specific usage.
This SAE Standard covers normalized electric-resistance welded, cold-drawn, single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, flaring, forming, and brazing. In an effort to standardize within a global marketplace and ensuring that companies can remain competitive in an international market it is the intent to convert to metric tube sizes which will: Lead to one global system Guide users to preferred system Reduce complexity Eliminate inventory duplications
Items per page:
50
1 – 50 of 215704