Results
This SAE Aerospace Recommended Practice (ARP) applies to airline trailer equipment with four wheel running gear pulled and steered through an integral tow bar, for use on airport ramps and other airport areas for transporting baggage, freight, and other materials. This ARP can apply to any airline/airport trailer chassis regardless of its equipment; the trailer bed can be designed to carry either bulk baggage/cargo, or a cargo unit load device by means of a rollerized conveyor system, or a piece of aircraft servicing equipment (e.g., ground power unit, air start unit, etc.).
This SAE Standard applies to directional drilling electronics and tracking equipment of the following types: Tracking transmitter Tracking receiver Telemetry device Remote display This type of tracking equipment is typically used with horizontal earthboring machines as defined in SAE J2022.
This specification covers an aluminum alloy in the form of die forgings from over 2.000 to 10.000 inches (50.8 to 254 mm) in nominal thickness and forging stock of any size (see 8.6).
This specification covers tantalum in the form of sheet, strip, plate, and foil up through 0.1875 inch (4.75 mm), inclusive (see 8.7).
This specification covers a titanium alloy in the form of bars up through 3.000 inches (76.20 mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 10 square inches (64.5 cm2) and forging stock of any size (see 8.7).
This SAE Aerospace Information Report (AIR) covers, and is restricted to, the behavior of air under conditions of critical and subcritical flow at temperatures less than 500 °F.
An Earned Value Management System (EVMS) integrates the work scope of a program with the schedule and cost elements for optimum program planning and control. The primary purpose of the system is to support integrated program management. The system is owned by the organization and is governed by the organization’s policies and procedures. The principles of an EVMS are: Plan all work scope for the program to completion. Break down the program work scope into finite pieces that are assigned to a responsible person or organization for control of technical, schedule, and cost objectives. Integrate program work scope, schedule, and cost objectives into a performance measurement baseline plan against which accomplishments are measured. Control changes to the baseline. Use actual costs incurred and recorded in accomplishing the work performed. Objectively assess accomplishments at the work performance level. Analyze significant variances from the plan, forecast impacts, and prepare an estimate
This SAE Recommended Practice defines requirements for equipment and supplies to be used in measuring shot peening intensity and other surface enhancement processes. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. Guidelines for use of these items can be found in SAE J443 and SAE J2597.
This SAE Standard provides requirements and guidance to: Develop a Materiel authenticity plan. Procure Materiel from reliable sources. Assure authenticity and conformance of procured Materiel, including methods such as certification, traceability, testing, and inspection appropriate to the Commodity/item in question. Control Materiel identified as counterfeit. Report Suspect or Counterfeit Materiel to other potential users and Authorities Having Jurisdiction.
This SAE Aerospace Standard (AS) provides the essential minimum design, installation, and removal standard for AS4383 adapter reducer and is applicable when specified on engineering drawings, or in procurement documents.
This Aerospace Recommended Practice (ARP) provides: Recommended methods for cleaning sample bottles, when used, and the solvents to be applied and how these solvents should be prepared. Recommendations for three measuring methods for determining the level of solid particle contamination of hydraulic fluids used in aerospace hydraulics. Recommendations for the selection of the sampling point, sampling method, and the sampling frequency.
This specification covers an ethylene propylene rubber in the form of molded rings, molded compression seals, molded O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
This SAE Aerospace Standard (AS) defines the requirements for heavy-duty polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assemblies suitable for use in 400 °F, 3000 psi aircraft hydraulic systems. Assemblies are suitable where rapid rate pressure pulsing and torsional/ longitudinal flexing may occur, in addition to normal hydraulic system loads.
This SAE lab recommended practice may be applied to corrosion test methods such as salt spray, filiform, Corrosion creep back, etc. This procedure is intended to permit corrosion testing to be assessed between Laboratories for correlation purposes.
This Aerospace Standard (AS) provides the general requirements for hydraulic components that are used in military aircraft and missile hydraulic systems.
This SAE Aerospace Information Report (AIR) provides basic information on the use of slipper seal sealing devices when used as piston (OD) and rod (ID) seals in aerospace fluid power components such as actuators, valves, and swivel joints, including: The definition of a slipper seal and the description of the basic types in use. Guidelines for selecting the type of slipper seal for a given design requirement are provided in terms of friction, leakage, service life, installation characteristics, and interchangeability.
This Aerospace Standard (AS) defines the requirements for polytetrafluoroethylene (PTFE) heavy duty hose assemblies suitable for use in aircraft and missile hydraulic fluid systems service to 8000 psi and -65 to 400 °F. Gaseous service shall be limited to 150 °F.
This SAE Aerospace Information Report (AIR) provides details of how to perform hydraulic system calculations using equations that incorporate the metric International System of Units (SI).
This SAE Aerospace Recommended Practice (ARP) provides recommendations for the design and test requirements for a spring-loaded, normally-closed hydraulic check valve. The check valve is intended for use in a civil or military aircraft hydraulic system with a rated system pressure up to 5000 psi (34500 kPa).
This specification covers the design requirements and test procedures for separable beam seal fittings which includes end fittings (see 2.3.4), fitting bodies (see 2.3.7), and boss fittings (see 2.3.2) for use in aerospace fluid systems. Design requirements are for class 3000 in corrosion resistant steel (15-5 PH, 17-4 PH CRES) only and for class 4000 in titanium alloy (Ti) and corrosion and heat-resistant steel (nickel alloy 718 CRES) only. Definition of fittings and related terms are defined in 2.3.
This SAE Aerospace Standard (AS) covers automatic pilots intended for use on aircraft to automatically operate the primary and trim aerodynamic controls to maintain stable flight and/or to provide maneuvering about any of the three axes through servo control. Automatic control functions essential for primary or augmented flight control are excluded.
This SAE Aerospace Recommended Practice (ARP) describes terminology specific to unmanned systems (UMSs) and definitions for those terms. It focuses only on terms used exclusively for the development, testing, and other activities regarding UMSs. It further focuses on the autonomy and performance measures aspects of UMSs and is based on the participants’ earlier work, the Autonomy Levels for Unmanned Systems (ALFUS) Framework, published as NIST Special Publication 1011-I-2.0 and NIST Special Publication 1011-II-1.0. This Practice also reflects the collaboration results with AIR5665. Terms that are used in the community but can be understood with common dictionary definitions are not included in this document. Further efforts to expand the scope of the terminology are being planned.
This SAE Aerospace Standard (AS) defines the requirements for a lightweight polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in high temperature, 400 °F, high pressure, 3000 psi, aircraft hydraulic systems, also for use in pneumatic systems which allow some gaseous diffusion through the PTFE wall.
This specification covers the design and installation requirements for Type I and II military aircraft hydraulic systems.
Items per page:
50
1 – 50 of 215789