Results
This SAE Recommended Practice provides a common method to measure wear of friction materials (brake pad assemblies and brake shoes) and their mating parts (brake disc or brake drum). These wear measurements apply to brakes fitted on passenger cars and light trucks up to 4536 kg of Gross Vehicle Weight Rating under the Federal Motor Vehicle Safety Standard (FMVSS), or vehicles category M1 (passenger cars up to nine occupants, including the driver) under the European Community’s ECE Regulations.
This SAE Aerospace Recommended Practice (ARP) applies to airline trailer equipment with four wheel running gear pulled and steered through an integral tow bar, for use on airport ramps and other airport areas for transporting baggage, freight, and other materials. This ARP can apply to any airline/airport trailer chassis regardless of its equipment; the trailer bed can be designed to carry either bulk baggage/cargo, or a cargo unit load device by means of a rollerized conveyor system, or a piece of aircraft servicing equipment (e.g., ground power unit, air start unit, etc.).
This SAE Recommended Practice describes the testing procedures that may be used to evaluate the integrity of ground ambulance-based occupant seating and occupant restraint systems for workers and civilians transported in the patient compartment of an ambulance when exposed to a frontal or side impact. This recommended practice was based on ambulance patient compartment dynamics and is not applicable to other vehicle applications or seating positions. This recommended practice is structured to accommodate seating systems installed in multiple attitudes including, but not limited to, side-facing, rear-facing, and forward-facing. Its purpose is to provide ambulance seating manufacturers, ambulance occupant restraint manufacturers, ambulance builders, and end users with testing procedures and, where appropriate, acceptance criteria that, to a great extent, ensures the occupant seating and occupant restraint system meet similar performance criteria as FMVSS 208 requires for seat belted
This SAE Standard applies to directional drilling electronics and tracking equipment of the following types: Tracking transmitter Tracking receiver Telemetry device Remote display This type of tracking equipment is typically used with horizontal earthboring machines as defined in SAE J2022.
This specification covers an aluminum alloy in the form of die forgings from over 2.000 to 10.000 inches (50.8 to 254 mm) in nominal thickness and forging stock of any size (see 8.6).
This specification covers tantalum in the form of sheet, strip, plate, and foil up through 0.1875 inch (4.75 mm), inclusive (see 8.7).
This specification covers a titanium alloy in the form of bars up through 3.000 inches (76.20 mm), inclusive, in diameter or least distance between parallel sides with a maximum cross-sectional area of 10 square inches (64.5 cm2) and forging stock of any size (see 8.7).
This specification covers a coating consisting of tungsten disulfide without binders and does not require a curing process.
This specification covers an aluminum alloy in the form of rolled or forged rings up to 6 inches (152 mm), inclusive, in nominal thickness at the time of heat treatment and having an OD to wall thickness ratio of 10 or greater (see 8.6).
This SAE Aerospace Standard defines a typical coupling (with different fitting end styles), which is used in typical cone connection fittings installed in high-pressure (up to 3000 psi) oxygen systems for the purpose of mating to applicable oxygen equipment. Dimensions are developed from AND10089 and AS4375.
SAE J2998 defines the recommended information content to be included for documenting dynamical models used for simulation of ground vehicle systems. It describes the information that should be compiled to describe a model for the following user applications or use cases: (1) exchange, promotion, and selection; (2) creation requests; (3) development process management; (4) compatibility evaluation; (5) testing-in-the-loop simulations with hardware and/or software; (6) simulation applications; and (7) development and maintenance. For each use case, a model description documentation (MDD) template is provided in the appendices to facilitate model documentation. In addition, an example of a completed model documentation template is provided in the appendices.
This specification covers a copper-beryllium alloy in the form of bars and rods (see 8.5).
This document recommends and sets forth a set of symbols representing the components making up aircraft fuel and oil systems. The intended result is uniformity in system schematics so that they may be easily understood throughout the aerospace industry.
This SAE Standard provides test procedures for air and air-over-hydraulic disc or drum brakes used for on-highway commercial vehicles over 4536 kg (10000 pounds) GVWR. This recommended practice includes the pass/fail criteria of Federal Motor Vehicle Safety Standard No. TP-121D-01.
The following schematic diagrams reflect various methods of illustrating automotive transmission arrangements. These have been developed to facilitate a clear understanding of the functional interrelations of the gearing, clutches, hydrodynamic drive unit, and other transmission components. Two variations of transmission diagrams are used: in neutral (clutches not applied) and in gear. For illustrative purposes, some typical transmissions are shown.
This specification covers ground type hydropneumatic pressure accumulators for use in ground support hydraulic systems at rated pressures ranging up to 5,000 psi including details pertinent to the design, fabrication, and performance of the accumulators.
This SAE Aerospace Recommended Practice (ARP) provides analytical and test methods for determining pressure drop in fluid systems such as hydraulic, fluid, oil, and coolant used in aerospace vehicles. Determining pressure drop by analytical and test results will be discussed.
This document defines the requirements for polytetrafluoroethylene (PTFE) lined, metallic braid reinforced, hose assembly suitable for use in 400 °F (204 °C), 5080 psi (35000 kPa) aircraft hydraulic systems.
This SAE Aerospace Information Report (AIR) presents data on normally accepted changes in physical properties and contamination levels for MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257 hydraulic fluids used in hydraulic test stands. This information is of importance to all users of hydraulic test stands to assure the performance data obtained on these test stands for specific components will not be adversely affected by excessive changes in fluid properties or contamination levels.
This ARP defines a recommended placard for readily identifying equipment with aircraft phosphate ester fluid to be used in the aircraft hydraulic systems to assure compatibility between the internal seals/materials and the system fluid. A definition is provided for a durable type and semipermanently attached placard with prescribed text for the permissible fluid are included in the document.
This specification covers the design and installation requirements for Type I and II military aircraft hydraulic systems.
This User Guide describes the content of the Rational Software Architect (RSA) version of the UCS Architectural Model and how to use this model within the RSA modeling tool environment. The purpose of the RSA version of the UCS Architectural Interface ICD model is to provide a model for Rational Software Architect (RSA) users, derived from the Enterprise Architect (EA) ICD model (AIR6515). The AIR6515 EA Model, and by derivation, the AIR6516 RSA Model, have been validated to contain the same content as the AS6518 model for: all UCS ICD interfaces all UCS ICD messages all UCS ICD data directly or indirectly referenced by ICD messages and interfaces the Domain Participant, Information, Service and Non-Functional Properties Models
This SAE Aerospace Recommended Practice (ARP) specifies dimensional and physical requirements of tow bar connections to tractor and aircraft (see Figure 1). It is applicable to all types of commercial transport category aircraft tow bar. The purpose of this SAE Aerospace Recommended Practice (ARP) is to standardize tow bar attachments to airplane and tractor according to the mass category of the towed aircraft, so that one tow bar head with different shear levels can be used for all aircraft that are within the same mass category and are manufactured in compliance with AS1614 or ISO 8267.
This SAE Aerospace Standard (AS) covers automatic pilots intended for use on aircraft to automatically operate the primary and trim aerodynamic controls to maintain stable flight and/or to provide maneuvering about any of the three axes through servo control. Automatic control functions essential for primary or augmented flight control are excluded.
This SAE Aerospace Standard (AS) establishes the requirements for 24 degree cone AS5827 or EN 6123 flareless ring locked fitting assemblies per AS5550 and AS5865, for use in aircraft fluid systems at nominal operating pressure of 5080 psi (35000 kPa) maximum and operating temperature range of -65 to +275 °F (-54 to +135 °C). The general requirements shall be for, but not limited to, commercial aircraft hydraulic components per AS4941, using port configuration as specified in AS5551.
This SAE Aerospace Recommended Practice (ARP) provides definitions and background information regarding the physical performance and testing of electrohydraulic flow control and pressure control servovalves. This ARP also provides extensive guidance for the preparation of procurement specifications and for functional testing. NOTE: An example of a procurement specification is provided as Appendix A.
This SAE Aerospace Information Report (AIR) provides details of how to perform hydraulic system calculations using equations that incorporate the metric International System of Units (SI).
Items per page:
50
1 – 50 of 215779