Results
This document defines a set of standard application layer interfaces called JAUS Manipulator Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Manipulator Services represent platform-independent capabilities commonly found across domains and types of unmanned systems. At present, twenty-five (25) services are defined in this document. These services are categorized as: Low Level Manipulator Control Services – The one service in this category allows for low-level command of the manipulator joint actuation efforts. This is an open-loop command that could be used in a simple tele-operation scenario. The service in this category is listed as follows: Primitive Manipulator Service Manipulator Sensor Services – These services, when queried, return instantaneous sensor data. Three services are defined that return respectively joint positions, joint velocities, and joint
The SAE Aerospace Information Report AIR5315 – Generic Open Architecture (GOA) defines “a framework to identify interface classes for applying open systems to the design of a specific hardware/software system.” [sae] JAUS Service (Interface) Definition Language defines an XML schema for the interface definition of services at the Class 4L, or Application Layer, and Class 3L, or System Services Layer, of the Generic Open Architecture stack (see Figure 1). The specification of JAUS services shall be defined according to the JAUS Service (Interface) Definition Language document.
The intent of this AIR is twofold: (1) to present descriptive summary of aircraft nosewheel steering and centering systems, and (2) to provide a discussion of problems encountered and “lessons learned” by various airplane manufacturers and users. This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new “lessons learned” become available.
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the selection, inspection, retread and repair of worn civil aircraft tires, and the means to verify that the retreaded tire is suitable for continued service. This document is applicable to both bias ply and radial aircraft tires qualified subsequent to the adoption of this document.
This SAE Standard was developed to provide a method for indicating the direction of engine rotation and numbering of engine cylinders. The document is intended for use in designing new engines to eliminate the differences which presently exist in industry.
The purpose of this SAE Aerospace Recommended Practice (ARP) is to establish guidelines for the measurement of static and dynamic characteristic properties of aircraft tires. It is intended as a general guide toward standard practice, but may be subject to frequent changes to keep pace with experience and technical advances. This revision (Revision A) is also intended to provide suggested guidelines for synthesizing tire dynamic data necessary for landing gear shimmy analyses.
This SAE Aerospace Recommended Practice (ARP) is written to establish tire removal criteria of on-wing civil aircraft tires only. This document is primarily intended for use with commercial aircraft, but may be used on other categories of civil aircraft, as applicable. The criteria are harmonized with the care and service manuals (CSMs) of the tire manufacturers for both radial and bias tires.
This SAE Aerospace Recommended Practice (ARP) covers the design, construction, performance and testing requirements for hand held aircraft tire inflation pressure gauges with valve stem attachment chuck to be used with all aircraft types. The ground-based gauges in this specification are those which are designed to read the tire inflation pressure from a position adjacent to the tire.
This specification covers the recommended design, construction, performance and testing requirements for aircraft wheel inflation valves incorporating an inflation pressure gauge which are mounted on the aircraft wheel. These valve/gauge assemblies should be appropriate for use on all aircraft types supported by tubeless tire/wheel assemblies.
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
The primary focus of this document is to provide information on the impacts hard landings and abnormal load conditions on landing gear and related systems. However, because hard landings potentially affect the entire aircraft, this document also includes information for non-landing gear areas. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP4915 and ARP5600 for information on dispositions relating to landing gear components or wheels involved in accidents/incidents.
This specification covers a nitriding grade of premium aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock. AMS6496 and AMS6498 cover UNS K23280 with other quality levels.
This SAE Aerospace Standard (AS) establishes the standard modules for aerospace metric involute gear teeth and establishes the tooth dimensions of aerospace metric involute gear teeth in terms of the conjugate rack type cutter whose counterpart reference profile is called the basic rack profile of the generated gear, having the tooth dimensions expressed in terms proportional to the module.
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that should be considered during design, development, certification, or testing of helicopter rotor blade ice protection systems. Although various concepts of ice protection are mentioned in this report, the text is limited generally to those factors associated with design and substantiation of cyclic electrothermal ice protection systems as applicable to the protection of helicopter rotor blades. Other systems are described briefly in Appendix A. Applications consider main rotor blades, conventional tail rotor blades, and other types of antitorque devices. The information contained in this report is also limited to the identification of factors that should be considered and why the factor is important. Specific design, analysis and test methodologies are not included. For additional information refer to the references listed in 2.1.
This Aerospace Information Report (AIR) outlines the conditions which diesel engines should meet when installed and used as prime movers for aircraft ground support equipment at commercial airports. All aircraft ground support equipment with a heavy duty diesel engine as defined on page 24293 of the November 15, 1972 Federal Register and used as a prime mover for the vehicle or equipment should meet all requirements as outlined herein. Typical equipment includes fuel trucks, commissary trucks, baggage tractors, ground power units, air start units, etc.
Items per page:
50
1 – 50 of 211568