Results
This Aerospace Information Report (AIR) will examine considerations relative to the use of mechanical switches on aircraft landing gear, and present "lessons learned" during the period that these devices have been used.
This SAE Recommended Practice documents nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
This document describes machine-to-machine (M2M)1 communication to enable cooperation between two or more traffic participants or CDA devices hosted or controlled by said traffic participants. The cooperation supports or enables performance of the dynamic driving task (DDT) for a subject vehicle equipped with an engaged driving automation system feature and a CDA device. Other participants may include other vehicles with driving automation feature(s) engaged, shared road users (e.g., drivers of conventional vehicles or pedestrians or cyclists carrying compatible personal devices), or compatible road operator devices (e.g., those used by personnel who maintain or operate traffic signals or work zones). Cooperative driving automation (CDA) aims to improve the safety and flow of traffic and/or facilitate road operations by supporting the safer and more efficient movement of multiple vehicles in proximity to one another. This is accomplished, for example, by sharing information that can be
This specification establishes the requirements for a probe type self-sealing, self-aligning, non-locking coupling intended for aerospace hydraulic and cooling systems.
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of round wire 0.001 to 0.140 inch (0.025 to 3.56 mm), inclusive, in nominal diameter supplied in straight lengths or coils (see 8.7).
This specification covers an aluminum alloy in the form of extruded bars, rods, shapes (profiles), and tubing 0.250 to 3.000 inches (6.35 to 76.20 mm), inclusive, in nominal diameter, least thickness, or nominal wall thickness (see 8.5).
This specification covers a corrosion-resistant steel in the form of bars and forgings 8 inches (203 mm) and under in nominal diameter or maximum cross-sectional dimension and forging stock of any size.
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of round wire 0.001 to 0.140 inch (0.025 to 3.56 mm), inclusive, in nominal diameter supplied in straight lengths or coils.
This document establishes the temperature types and pressure classes that are commonly used in aerospace fluid systems. The temperature types and pressure classes are equivalent, but not identical, to the SI units defined in MA2001 (ISO 6771). For exact conversion use NAS 10000.
This specification establishes testing methods and maximum permissible limits for trace elements in nickel alloy castings and powder materials. It shall apply only when required by the material specification.
This SAE Recommended Practice establishes uniform procedures for evaluating conformity between the actual and target drive speeds for chassis dynamometer and on-road testing utilizing standard fuel economy/energy consumption and emissions drive schedules.
This specification covers a titanium alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm), inclusive (see 8.6).
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, profiles, and tubing.
This SAE Aerospace Standard (AS) establishes supplemental requirements for 9100 and 9145 and applies to any organization receiving it as part of a purchase order or other contractual document from a customer. AS13100 also provides details of the reference materials (RM13xxx) developed by the SAE G-22 AESQ committee and listed in Section 2 that can also be used by organizations in conjunction with this standard.
This SAE Recommended Practice applies to functions of motor vehicle signaling and marking lighting devices which use light emitting diodes (LEDs) as light sources. This report provides test methods, requirements, and guidelines applicable to the special characteristics of LED lighting devices. This SAE Recommended Practice is in addition to those required for devices designed with incandescent light sources. This report is intended to be a guide to standard practice and is subject to change to reflect additional experience and technical advances.
This SAE Recommended Practice was developed primarily for passenger car and truck applications, but it may be used in marine, industrial, and similar applications.
This SAE Standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
This SAE Recommended Practice covers minimum requirements for air brake hose assemblies made from reinforced elastomeric hose and suitable fittings for use in automotive air brake systems, including flexible connections from frame to axle, tractor to trailer, trailer to trailer, and other unshielded air lines with air pressures up to 1 MPa, that are exposed to potential pull or impact. This hose is not to be used where temperatures, external or internal, fall outside the range of -40 to +100 °C. Provisions for extreme low temperature performance testing to -54 °C are included in the document.
These general operator precautions apply to off-road work machines as defined in SAE J1116. These should not be considered as all-inclusive for all specific uses and unique features of each particular machine. Other more specific operator precautions not mentioned herein should be covered by users of this recommended practice for each particular machine application.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing with a nominal diameter or least thickness (wall thickness of tubing) up to 5.000 inches (127 mm), inclusive (see 8.5).
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle Locating the SgRP as a function of seat height (H30) Establishing seat track dimensions using the seating accommodation model Establishing a steering wheel position Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100.
This foundation specification (AMS1424T) and its associated category specifications (AMS1424/1 and AMS1424/2) cover a deicing/anti-icing material in the form of a fluid.
This specification covers a magnesium alloy in the form of permanent mold castings (see 8.6).
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
This specification covers an aluminum alloy in the form of seamless drawn tubing from 0.025 to 0.500 inch (0.64 to 12.70 mm), inclusive, in wall thickness (see 8.5).
This SAE Aerospace Recommended Practice (ARP) provides the recommended procedure for obtaining desired preloads in aircraft wheel tie bolts when mounting tires and assembling the wheel. It is generally referred to as the snug-angle bolted joint assembly procedure. It is also known as the “torque-turn” procedure in the heavy equipment ground vehicle industry.
This specification covers a titanium alloy in the form of bars up through 10.000 inches (2540 mm) in nominal diameter or least distance between parallel sides, inclusive, with bars having a maximum cross-sectional area of 79 square inches (509.67 cm2), and stock for forging of any size (see 8.7).
This specification covers discontinuously reinforced aluminum alloy (DRA) metal matrix composites (MMC) made by mechanical alloying of the 2124A powder and SiC particulate, which is then consolidated by hot isostatic pressing (HIP) into shapes less than 62 square inches (0.04 m2) in cross-sectional area (see 8.12).
This specification covers an aircraft-quality, low-alloy steel in the form of mechanical tubing.
This specification covers one grade of commercially pure titanium in the form of bars, wire, forgings, and flash-welded rings up to 5.000 inches (127.00 mm), inclusive, in nominal diameter or least distance between parallel sides and stock for forging or flash-welded rings (see 8.6).
This specification covers an aluminum alloy in the form of extruded profiles 0.750 to 1.500 inches (19.05 to 38.10 mm) in nominal thickness with a maximum cross-sectional area of 19 square inches (123 cm2) and a maximum circle size of 11 inches (279 mm) (see 8.6).
This specification covers an aluminum alloy in the form of plate 1.0 to 6 inches (25.4 to 152.4 mm), inclusive, in nominal thickness (see 8.5).
This specification covers a magnesium alloy in the form of permanent mold castings (see 8.6).
This specification covers an extra high toughness, corrosion-resistant steel in the form of bars, wire, forgings, flash-welded rings, and extrusions up to 12 inches (305 mm) in nominal diameter or least distance between parallel sides (thickness) in the solution heat-treated condition and stock of any size for forging, flash-welded rings, or extrusion.
This specification covers an aluminum alloy in the form of hand forgings up to 6 inches (152 mm), inclusive, in nominal as-forged thickness and having a cross-sectional area of not more than 156 square inches (1006 cm2) (see 8.7).
This specification covers a titanium alloy in the form of sheet and strip 0.125 inch (3.18 mm) and under in nominal thickness (see 8.6).
This SAE Aerospace Standard (AS) prescribes requirements for the various types of nozzles that are used for the refueling and defueling of aircraft fitted with pressure fuel servicing systems. It is to be used as a replacement for MIL-N-5877 and MS29520 and for all commercial applications.
This SAE Recommended Practice provides uniform definitions and classifications for motorcycles and motorized three-wheel cycles.
Items per page:
50
1 – 50 of 211446