This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
A Guide to APU Health Management
- Aerospace Standard
- AIR5317A
- Reaffirmed
Downloadable datasets available
Annotation ability available
Sector:
Issuing Committee:
Language:
English
Scope
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
Rationale
This SAE Aerospace Information Report (AIR) provides insight and guidance into the best practices for implementing a health management capability for Auxiliary Power Units (APUs) installed on commercial or military aircraft. With the considerable advancement of prognostics and health management (PHM) tools and capabilities in the past 10 years, operators expect that the value proposition for such a system can easily be demonstrated for APUs. This AIR aims to assist operators in building the PHM capability such that the value can be achieved.
AIR5317A has been reaffirmed to comply with the SAE Five-Year Review policy.
Recommended Content
Topic
Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Table 1 | Typical APU functional FMEA | |
Table 2 | Equations for correcting measured parameters |
Issuing Committee
E-32 Aerospace Propulsion Systems Health Management
Background
Engine condition monitoring and rotorcraft HUMS(Health and Usage Monitoring Systems)can be used as a tool to track and restore engine performance, improve problem diagnosis, suggest solutions, promote better commercial and military aircraft operation, minimize in-flight failures, and reduce costs of engine maintenance. Because of these and other continuing objectives, the need for consolidated action by a group of experts to promote engine monitoring and rotorcraft condition monitoring know-how and standards was identified. It was deemed appropriate by the SAE Propulsion Division to assign this task to a special committee designated as Committee E-32. The committee has existed for over 40 years and has 26 active members. Purpose / Charter E-32 Committee serves as a forum to gather, record, and publish expert information in the discipline of aerospace propulsion system health management. The Committee gathers and analyzes requirements for propulsion system health management for the various types of air vehicle propulsion systems and develops standards and recommendations for the adoption of aerospace propulsion system health management devices that affect the operation of propulsion systems. Objectives Identifies potential propulsion system parameters suitable for sensing (pressure, temperature, vibration, etc.) and considerations involved in selecting parameters (potential problems, accuracy, cost, etc.), Analyzes the various approaches to aerospace propulsion system health management (e.g., airborne vibration health management systems, fault prediction capabilities, ground software interfaces, etc.) and establishes criteria for cost effective systems, and guidance regarding best practices for designing propulsion health management systems, Develops appropriate standards for aerospace propulsion system health management equipment and techniques; e.g., types of sensors, identification of signals which should be led to common diagnostic connectors, etc., Develops new requirements and uses for aerospace propulsion system health management to promote sustainable and cost effective operation of air vehicles, and Hosts technical conferences related to health management of propulsion systems. Provide a means to gain regulatory approval for utilizing EHM data in a range of maintenance activities.Reference
* Redlines comparisons are available for those standards
listed in the Revision History that contain a radio button. A
redline comparison of the current version against a revision is
accomplished by selecting the radio button next to the standard and
then selecting 'compare'. At this time, Redline versions only exist
for some AMS standards. SAE will continue to add redline versioning
with ongoing updates to SAE MOBILUS.