This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Shearing and Bending Effects at the Knee Joint at High Speed Lateral Loading
Annotation ability available
Sector:
Language:
English
Abstract
The main objective of this study is to determine the damage tolerance and to describe the damage mechanisms of the extended human knee when it is exposed to lateral impact loads in pedestrian accidents, particularly those that occur at high velocity. An experimental method for assessing the damage tolerance of the knee region to loads acting at the extended lower extremity was developed. In-Vitro experiments with human subjects were conducted where only the purest possible shearing deformation or the purest possible bending deformation affected the knee region at the time. Ten experiments at a velocity level of 40 km/h were performed in a shearing and a bending setup, respectively. The peak values of the shearing force and the bending moment related to the damage of knee ligaments and bone fractures were calculated at knee joint level. Damages were assessed by dissecting the lower extremity. In general, if the extremity was exposed to dynamic loads from high velocity impact, the main types of damage are fractures.
When the knee joint was exposed to the “purest possible shearing deformation”, the most common initial damage mechanism was due to combination of shearing and bending deformation of the knee, which resulted in articular fractures and, related to them, ligament damage (40% of cases). Those fractures originated from development of axial compressive forces between femur and tibia condyles. This type of damage occurred when mean value of peak shearing force and peak bending moment acting at the knee joint level was 2.4 kN (SD 0.7) and 414 Nm (SD 96); the shearing displacement and bending angle was 16 mm (SD 7) and -3.0° (SD 1.6), respectively. Another common initial damage mechanism resulted in femur fractures (supracondylar or at the diaphysis). This type of damage occurred when mean value of peak shearing force and peak bending moment acting at the knee joint level was 2.9 kN (SD 0.3) and 501 Nm (SD 98), respectively. The corresponding shearing displacement at the knee was 28 mm (SD 2) and the bending angle was -2.5° (SD 1.8).
When the knee joint was exposed to the “purest possible bending deformation” the most common initial damage mechanism (70% of cases) was related to the femur fractures (supracondylar or at the diaphysis). The mean value of peak shearing force and peak bending moment calculated at the knee joint level when these fractures occurred was 1.4 kN (SD 0.6) and 351 Nm (SD 89), respectively. This type of initial damage occurred when the undamaged knee was already bent 16.4° (SD 4.4). The initial ligament damage due to bending deformation of the knee was observed in 20% of cases only. The mean value of peak shearing force and peak bending moment developed at the knee joint level that correspond to ligament damage was 1.4 kN (SD 0.2) and 284 Nm (SD 18), respectively. This type of damage occurred when the knee was bent 14.6° (SD 0.2).
Recommended Content
Technical Paper | Shearing and Bending Effects at the Knee Joint at Low Speed Lateral Loading |
Technical Paper | Computer Simulation of Shearing and Bending Response of the Knee Joint to a Lateral Impact |
Authors
Topic
Citation
Kajzer, J., Schroeder, G., Ishikawa, H., Matsui, Y. et al., "Shearing and Bending Effects at the Knee Joint at High Speed Lateral Loading," SAE Technical Paper 973326, 1997, https://doi.org/10.4271/973326.Also In
References
- Institute for Traffic Accident Research and Data Analysis of Japan Annual Traffic Accident Report in 1995 (in Japanese) Tokyo 1996
- European Experimental Vehicles Committee Proposals for Methods to Evaluate Pedestrian Protection for Passenger Cars EEVC Working Group 10 Report 1994
- Levine R.S. Begeman P.C. King A.I. An Analysis of the Protection of Lateral Knee Bracing in Full Extension using a Cadaver Simulation of Lateral Knee Impact, American Academic of Orthopedica Surgerical 1984
- Kajzer J. Cavallero C. Ghanouchi S. Bonnoit J. Ghorbel A. Response of the Knee Joint in Lateral Impact - Effect of Shearing Loads IRCOBI 1991
- Kajzer J. Cavallero C. Bonnoit J. Morjane A. Ghanouchi S. Response of the Knee Joint in Lateral Impact - Effect of Bending Moment IRCOBI 1993
- Ramet M. Bouquet R. Bermond F. Caire Y. Shearing and Bending Human Knee Joint Tests in Quasi-static Lateral Load IRCOBI 1995
- Müller M. E. Allgöwer M. Schneider R. Willenegger H. Manual of Internal Fixation - Techniques AO-ASIF Group Springer-Verlag 1991
- Cesari D. Cavallero C. Roche H. Evaluation of the Round Symmetrical Pedestrian Dummy Leg Behaviour 12th ESV 1989
- Lawrence G. Thornton S. The Development and Evaluation of the TRL Legform Impactor 1996