This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Further Investigation of a Relation for Cumulative Fatigue Damage in Bending
Annotation ability available
Sector:
Language:
English
Abstract
The fatigue behavior of several steels, AISI 4130, E52100, and 304 ELC stainless, as well as that of a nonferrous alloy, 5456-H311, was investigated in rotating bending fatigue after these materials were subjected to a prestress for different cyclic histories. The data obtained corroborated the hypothesis proposed by the authors that lines representing the S - log N relation of a material prestressed in varying amounts will intersect the S - log N line of the original material near a common point.
A correlation was found between the stress at this intersection point and the ultimate tensile strength. Thus, the only requirements for establishing the fatigue behavior of a prestressed material in the range of stresses where the S -log N line is inclined are the S - log N line of the original material and the ultimate tensile strength.
The importance of determining the new endurance limit of a material after prestressing was shown analytically. The omission from cycle ratio summations of cyclic histories applied below the original, but above the new endurance limit of a material, was shown for an illustrative example to result in a cycle ratio summation less than unity, which leads to unconservative estimates of fatigue life. Cyclic histories so applied can produce damage and must be taken into account. A new hypothesis based upon actual fatigue behavior and incorporating a cycle-ratio - modified-stress-ratio factor is suggested, which holds promise for more accurately predicting the new endurance limit than most existing methods. Extensive additional tests are required to verify this concept
Recommended Content
Technical Paper | Dimensional Variation in Long Runout Length Direct Extruded 6000 Series Aluminum Alloy |
Technical Paper | Fatigue Life Prediction for Variable Amplitude Strain Histories |
Authors
Citation
Manson, S., Nachtigall, A., Ensign, C., and Freche, J., "Further Investigation of a Relation for Cumulative Fatigue Damage in Bending," SAE Technical Paper 640498, 1964, https://doi.org/10.4271/640498.Also In
References
- Richart F. E. Newmark N. M. “An Hypothesis for the Determination of Cumulative Damage in Fatigue,” ASTM Proc. 48 1948 767 800
- Marco S. M. Starkey W. L. “A Concept of Fatigue Damage,” Trans. ASME 76 1954 627 632
- Corten H. T. Dolan T. J. “Cumulative Fatigue Damage,” Inst. of Mech. Engrs. I London 1956
- Freudenthal A. M. Heller R. A. “Accumulation of Fatigue Damage.” “Fatigue in Aircraft Structures.” New York Academic Press, Inc. 1956 146 177
- Freudenthal A. M. Heller R. A. “On Stress Interaction in Fatigue and a Cumulative Damage Rule: Part I - 2024 Aluminum and SAE 4340 Steel Alloys.” WADC TR 58-69 1958
- Palmgren A. “die Lebensdauer von Kugellagern,” ZVDI 68 1924 339 341
- Miner M. A. “Cumulative Damage in Fatigue,” J. Appl. Mechanics 12 1945 A159 A164
- Henry D. L. “Theory of Fatigue-Damage Accumulation in Steel,” Trans. ASME 77 1955 913 918
- Gatts R. R. “Application of a Cumulative Damage Concept to Fatigue,” Trans. ASME, Ser. D: J. Basic Eng. 83 1961 2 529 540
- Brown G. W. Work C. E. “An Evaluation of the Influence of Cyclic Prestressing on Fatigue Limit,” Proceedings ASTM 63
- Grover Horace J. “Cumulative Damage Theories,” Fatigue of Aircraft Structures, WADC Symposium WADC, TR-59-507 Aug. 1959 207 225
- Bennett J. A. “A Study of the Damaging Effect of Fatigue Stressing on X4130 Steel,” Proc. ASTM 46 1946 693 711
- Manson S. S. Nachtigall A. J. Freche J. C. “A Proposed New Relation for Cumulative Fatigue Damage in Bending,” Proc. ASTM 61 1961 679 703
- “A Tentative Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data,” ASTM STP No. 91-A 1958