
Prediction of Electric Vehicle Transmission Efficiency Using a New Thermally Coupled Lubrication Model
Technical Paper
2022-01-5026
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Event:
Automotive Technical Papers
Language:
English
Abstract
We present a new method to predict the power losses in electric vehicle (EV)
transmission systems using a thermally coupled gearbox efficiency model.
Friction losses in gear teeth contacts are predicted using an iterative
procedure to account for the thermal coupling between the tooth temperature, oil
viscosity, film thickness, friction, and oil rheology during a gear mesh cycle.
Crucially, the prediction of the evolution of the coefficient of friction (COF)
along the path of contact incorporates measured lubricant rheological parameters
as well as measured boundary friction. This allows the model to differentiate
between nominally similar lubricants in terms of their impact on EV transmission
efficiency. Bearing and gear churning losses are predicted using existing
empirical relationships. The effects of EV motor cooling and heat transfers in
the heat exchanger on oil temperature are considered. Finally, heat transfer to
the surroundings is accounted for so that the evolution of gearbox temperature
over any given drive cycle can be predicted. The general approach presented here
is applicable to any automotive gearbox while incorporating features specific to
EVs. The model predictions are compared to real road measurements made on a
popular current EV, and good agreement is shown over a range of road conditions.
It should be noted that at high input speeds, the current model somewhat
overpredicts the gearbox losses due to limitations in existing empirical bearing
and churning loss models. Analyses of transmission losses breakdown at constant
input power show that at low speeds/high torques, it is the losses in the gear
meshes and high-load bearings that are most significant whereas at high
speeds/low torques the losses in high-speed input shaft bearings, as well as
gear churning losses, become more important. It is shown that the gearbox losses
can account for 15-25% of the overall power losses in an EV depending on road
conditions; a much higher proportion than in an internal combustion engine (ICE)
vehicle, thus demonstrating that reducing transmission losses offers an
important avenue for improving EV efficiency. Finally, the influence of oil
properties on EV transmission losses is demonstrated by applying the model to
predict losses over the Worldwide Harmonized Light Vehicles Test Procedure
(WLTP) drive cycle. The presented model can help to optimize both gearbox design
and lubricant properties to minimize EV transmission losses and hence improve EV
range.
Authors
Topic
Citation
Shore, J., Christodoulias, A., Kolekar, A., Lockwood, F. et al., "Prediction of Electric Vehicle Transmission Efficiency Using a New Thermally Coupled Lubrication Model," SAE Technical Paper 2022-01-5026, 2022, https://doi.org/10.4271/2022-01-5026.Also In
References
- Sato , Y. , Ishikawa , S. , Okubo , T. , Abe , M. et al. Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle SAE Technical Paper 2011-01-0350 2011 https://doi.org/10.4271/2011-01-0350
- Kadiric , A. and Christodoulias , A. A Model for Prediction of Gearbox Power Losses under Conditions Pertinent to EV Operation Technische Akademie Esslingen 22nd International Colloquium Tribology Esslingen 2020
- Bottiglione , F. , De Pinto , S. , Mantriota , G. , and Sorniotti , A. Energy Consumption of a Battery Electric Vehicle with Infinitely Variable Transmission Energies 7 12 2014 8317 8337 https://doi.org/10.3390/en7128317
- Becker , E.P. Gearboxes and Battery Electric Vehicles Tribol. Lubr. Technol. 75 8 2019 68
- Kwon , K. , Jo , J. , and Min , S. Multi-Objective Gear Ratio and Shifting Pattern Optimization of Multi-Speed Transmissions for Electric Vehicles Considering Variable Transmission Efficiency Energy 236 2021 121419 https://doi.org/10.1016/j.energy.2021.121419
- Laitinen , H. , Lajunen , A. , and Tammi , K. Improving Electric Vehicle Energy Efficiency with Two-Speed Gearbox 2017 IEEE Vehicle Power and Propulsion Conference, VPPC 2017 Belfort, France 1 5 2018 https://doi.org/10.1109/VPPC.2017.8330889
- De Pinto , S. , Camocardi , P. , Chatzikomis , C. , Sorniotti , A. et al. On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems Energies 13 13 2020 3328 https://doi.org/10.3390/en13133328
- Liu , P. , Feng , S. , Wei , W. , Gu , Y. et al. Energy Consumption Analysis of a Novel Two-Speed e-Powertrain System for Electric Vehicle Proceedings of the Energy Conversion Congress and Exposition—Asia, ECCE Asia 2021 Singapore 1801 1805 2021 https://doi.org/10.1109/ECCE-Asia49820.2021.9478972
- Wang , Y. , Lü , E. , Lu , H. , Zhang , N. et al. Comprehensive Design and Optimization of an Electric Vehicle Powertrain Equipped with a Two-Speed Dual-Clutch Transmission Adv. Mech. Eng. 9 1 2017 1 13 https://doi.org/10.1177/1687814016683144
- Tehrani , M.G. , Kelkka , J. , Sopanen , J. , Mikkola , A. et al. Transmission Configuration Effect on Total Efficiency of Electric Vehicle Powertrain 2014 16th European Conference on Power Electronics and Applications, EPE-ECCE Europe 2014 Lappeenranta, Finland 26 28 2014 https://doi.org/10.1109/EPE.2014.6910780
- Anderson , N.E. and Loewenthal , S.H. 1980
- Petry-Johnson , T.T. , Kahraman , A. , Anderson , N.E. , and Chase , D.R. An Experimental Investigation of Spur Gear Efficiency J. Mech. Des. Trans. ASME 130 6 2008 0626011 06260110 https://doi.org/10.1115/1.2898876
- Michaelis , K. , Höhn , B.R. , and Hinterstoißer , M. Influence Factors on Gearbox Power Loss Ind. Lubr. Tribol. 63 1 2011 46 55 https://doi.org/10.1108/00368791111101830
- Li , S. and Kahraman , A. Prediction of Spur Gear Mechanical Power Losses Using a Transient Elastohydrodynamic Lubrication Model Tribol. Trans. 53 4 2010 554 563 https://doi.org/10.1080/10402000903502279
- Chang , L. , Jeng , Y.R. , and Huang , P.Y. Modeling and Analysis of the Meshing Losses of Involute Spur Gears in High-Speed and High-Load Conditions J. Tribol. 135 1 2013 1 11 https://doi.org/10.1115/1.4007809
- AGMA 925-A03 2013
- Changenet , C. , Oviedo-Marlot , X. , and Velex , P. Power Loss Predictions in Geared Transmissions Using Thermal Networks-Applications to a Six-Speed Manual Gearbox J. Mech. Des. Trans. ASME 128 3 2006 618 625 https://doi.org/10.1115/1.2181601
- Durand De Gevigney , J. , Changenet , C. , Ville , F. , and Velex , P. Thermal Modelling of a Back-to-Back Gearbox Test Machine: Application to the FZG Test Rig Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 226 6 2012 501 515 https://doi.org/10.1177/1350650111433243
- Olver , A.V. and Spikes , H.A. Prediction of Traction in Elastohydrodynamic Lubrication Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 212 321 1998 321 332 https://doi.org/10.1243/1350650981542137
- Yu , Q. , Chang , L. , and Jeng , Y.R. A Mathematical Model for Rolling/Sliding Line Contacts in Boundary and Near Boundary Lubrication Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229 11 2015 1279 1291 https://doi.org/10.1177/1350650115577115
- Spikes , H. and Zhang , J. History, Origins and Prediction of Elastohydrodynamic Friction Tribol. Lett. 56 1 2014 1 25 https://doi.org/10.1007/s11249-014-0396-y
- Baglioni , S. , Cianetti , F. , and Landi , L. Influence of the Addendum Modification on Spur Gear Efficiency Mech. Mach. Theory 49 2012 216 233 https://doi.org/10.1016/j.mechmachtheory.2011.10.007
- Christodoulias , A. Prediction of Power Losses in an Automotive Gearbox London Imperial College London 2017
- Fernandes , C.M.C.G. , Marques , P.M.T. , Martins , R.C. , and Seabra , J.H.O. Gearbox Power Loss. Part I: Losses in Rolling Bearings Tribol. Int. 88 2015 298 308 https://doi.org/10.1016/j.triboint.2014.11.017
- Höhn , B.R. , Michaelis , K. , and Otto , H.P. Influence of Immersion Depth of Dip Lubricated Gears on Power Loss, Bulk Temperature and Scuffing Load Carrying Capacity Int. J. Mech. Mater. Des. 4 2 2008 145 156 https://doi.org/10.1007/s10999-007-9045-z
- Hinterstoißer , M. , Höhn , B.-R. , and Michaelis , K. Optimization of Gearbox Efficiency Goiiva i Maz. Časopis Za Tribol. Teh. Pod. i Primjen. Tekućih i Plinovitih Goriva i Inžinjerstvo Izgaranja 48 4 2009 462 480
- Diez-Ibarbia , A. , del Rincon , A.F. , Iglesias , M. , De-Juan , A. , Garcia , P. and Viadero , F. Efficiency Analysis of Spur Gears with a Shifting Profile Meccanica 51 3 707 723 2016 https://doi.org/10.1007/s11012-015-0209-x
- Xu , H. Development of a Generalized Mechanical Efficiency Prediction Methodology for Gear Pairs Columbus, OH The Ohio State University 2005
- Moss , J. , Kahraman , A. , and Wink , C. An Experimental Study of Influence of Lubrication Methods on Efficiency and Contact Fatigue Life of Spur Gears J. Tribol. 140 5 2018 1 11 https://doi.org/10.1115/1.4039929
- Benedict , G.H. and Kelley , B.W. Instantaneous Coefficients of Gear Tooth Friction ASLE Trans. 4 1 1961 59 70 https://doi.org/10.1080/05698196108972420
- Fernandes , C.M.C.G. , Martins , R.C. , and Seabra , J.H.O. Coefficient of Friction Equation for Gears Based on a Modified Hersey Parameter Tribol. Int. 101 2016 204 217 https://doi.org/10.1016/j.triboint.2016.03.028
- Niel , D. , Changenet , C. , Ville , F. , and Octrue , M. Thermomechanical Study of High Speed Rolling Element Bearing: A Simplified Approach Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 233 4 2019 541 552 https://doi.org/10.1177/1350650117750806
- Morales-Espejel , G. Using a Friction Model as an Engineering Tool Evol. SKF 2 2006 27 30
- SKF 2017 1 15 http://www.skf.com/binary/86-299767/TheSKFmodelforcalculatingthefrictionalmoment_tcm_12-299767.pdf
- Pouly , F. , Changenet , C. , Ville , F. , Velex , P. et al. Investigations on the Power Losses and Thermal Behaviour of Rolling Element Bearings Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 224 9 2010 925 933 https://doi.org/10.1243/13506501JET695
- Pouly , F. , Changenet , C. , Ville , F. , Velex , P. et al. Power Loss Predictions in High-Speed Rolling Element Bearings Using Thermal Networks Tribol. Trans. 53 6 2010 957 967 https://doi.org/10.1080/10402004.2010.512117
- Achtenova , G. and Pakosta , J. Estimation of the Gearbox No-Load Losses SAE Technical Paper 2016-01-1092 2016 https://doi.org/10.4271/2016-01-1092
- Wink , C.H. , Marson , L. , and Goyal , S. Hybrid Analytical-Experimental Method to Map Power Losses of Automotive Transmissions over Their Operating Range Tribol. Int. 143 2019 106070 https://doi.org/10.1016/j.triboint.2019.106070
- Kolekar , A.S. , Olver , A.V. , Sworski , A.E. , and Lockwood , F.E. The Efficiency of a Hypoid Axle—A Thermally Coupled Lubrication Model Tribol. Int. 59 2013 203 209 https://doi.org/10.1016/j.triboint.2012.03.013
- Kolekar , A.S. , Olver , A.V. , Sworski , A.E. , and Lockwood , F.E. Windage and Churning Effects in Dipped Lubrication J. Tribol. 136 2 2014 1 10 https://doi.org/10.1115/1.4025992
- Leprince , G. , Changenet , C. , Ville , F. , and Velex , P. Investigations on Oil Flow Rates Projected on the Casing Walls by Splashed Lubricated Gears Adv. Tribol. 2012 2012 1 7 https://doi.org/10.1155/2012/365414
- Lauster , E. and Boos , M. Zum Wärmehaushal Mechanischer Schaltgetriebe für Nutzfahrzeuge VDI-Ber. 488 1983 45 55
- Terekhov , A.S. Hydraulic Losses in Gearboxes with Oil Immersion Russ. Eng. J. (English Transl. Vestn. Mashinostroeniya) 55 5 1975 7 11
- Changenet , C. , Leprince , G. , Ville , F. , and Velex , P. A Note on Flow Regimes and Churning Loss Modeling J. Mech. Des. Trans. ASME 133 12 2011 1 5 https://doi.org/10.1115/1.4005330
- Changenet , C. and Velex , P. A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results J. Mech. Des. Trans. ASME 129 1 2007 128 133 https://doi.org/10.1115/1.2403727
- Chittenden , R.J. , Dowson , D. , Dunn , J.F. , and Taylor , C.M. A Theoretical Analysis of the Isothermal Elastohydrodynamic Lubrication of Concentrated Contacts. I. Direction of Lubricant Entrainment Coincident with the Major Axis of the Hertzian Contact Ellipse Proc. R. Soc. London, Ser. A (Mathematical Phys. Sci.) 397 1813 1985 245 269
- Chittenden , R.J. , Dowson , D. , Dunn , J.F. , and Taylor , C.M. A Theoretical Analysis of the Isothermal Elastohydrodynamic Lubrication of Concentrated Contacts. II. General Case, with Lubricant Entrainment along Either Principal Axis of the Hertzian Contact Ellipse or at Some Intermediate Angle Proc. R. Soc. London, Ser. A (Mathematical Phys. Sci.) 397 1813 1985 271 294
- Lafountain , A.R. , Johnston , G.J. , and Spikes , H.A. The Elastohydrodynamic Traction of Synthetic Base Oil Blends Tribol. Trans. 44 4 2001 648 656 https://doi.org/10.1080/10402000108982506
- Smeeth , M. and Spikes , H.A. The Influence of Slide Roll Ratio on the Film Thickness of an EHD Contact Operating within the Mixed Lubrication Regime Twenty-Second Leeds-Lyon Symposium on Tribology, the Third Body Concept Lyon, France 1995
- Chakravathy , K. and Kadiric , A. A New Thermally-Coupled Model for Prediction of Gearbox Power Losses 74th STLE Annual Meeting & Exhibition Nashville, Tennessee 2019
- Wan , Y. , Cui , S. , Wu , S. , and Song , L. Electromagnetic Design and Losses Analysis of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings for Pulsed Alternator Energies 11 3 2018 562 https://doi.org/10.3390/en11030562
- Fénot , M. , Bertin , Y. , Dorignac , E. , and Lalizel , G. A Review of Heat Transfer between Concentric Rotating Cylinders with or without Axial Flow Int. J. Therm. Sci. 50 7 2011 1138 1155 https://doi.org/10.1016/j.ijthermalsci.2011.02.013
- Tachibana , F. and Fukui , S. Convective Heat Transfer of the Rotational and Axial Flow between Two Concentric Cylinders Bull. JSME 7 26 1964 385 391
- Incropera , F.P. , Dewitt , D.P. , Bergman , T.L. , and Lavine , A.S. Foundations of Heat Transfer 6th Singapore John Wiley Sons, Inc. 2013 978-0-470-64616-8
- Christodoulias , A.I. , Olver , A.V. , Kadiric , A. , Sworski , A.E. et al. The Efficiency of a Simple Spur Gearbox—A Thermally Coupled Lubrication Model AGMA FTM 2014 American Gear Manufacturers Association Fall Technical Meeting, October 12-14, 2014 Arlington, Virginia 81 98 2014
- WLTPfacts 2017 https://www.wltpfacts.eu/wp-content/uploads/2017/04/WLTP_Leaflet_FA_web.pdf 2021