This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Prediction of ECN Spray—A Characteristics Using Machine Learning
Technical Paper
2022-01-0494
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
Flame lift-off length (FLOL), ignition delay time (IDT), liquid length (LL), and Soot are essential parameters defining spray combustion characteristics. They help understand the combustion dynamics and validate the spray and combustion models for numerical simulations. However, obtaining extensive data from experiments is costlier and time-consuming. Machine learning (ML) models have advanced to the point where they could create efficient models that could be used as surrogates for experiments. In this study, five different ML algorithms have been trained using the experimental dataset available through the engine combustion network (ECN) community. A novel genetic algorithm-based hyperparameter optimization code has been used to optimize the models to improve prediction accuracy. The model performances were compared, and the better model was chosen as an experimental surrogate to predict FLOL, IDT, LL, and Soot.
Authors
Citation
Mohan, B. and Badra, J., "Prediction of ECN Spray—A Characteristics Using Machine Learning," SAE Technical Paper 2022-01-0494, 2022, https://doi.org/10.4271/2022-01-0494.Also In
References
- Mohan , B. , Yang , W. , and Chou , S.K. Fuel Injection Strategies for Performance Improvement and Emissions Reduction in Compression ignition Engines—A Review Renewable and Sustainable Energy Reviews. 28 2013 664 676
- Faeth , G.M. Mixing, Transport and Combustion in Sprays Progress in Energy Combustion Science. 13 4 1987 293 345
- Mohan , B. , Mubarak Ali , M. , Ahmed , A. , Hernandez Perez , F. et al. Numerical Simulations of High Reactivity Gasoline Fuel Sprays under Vaporizing and Reactive Conditions SAE Technical Paper 2018-01-0292 2018 https://doi.org/10.4271/2018-01-0292
- Pickett , L.M. , Kook , S. , Musculus , M.P. and Gemlich , R.K. 2008
- Siebers , D. Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization SAE Technical Paper 1999-01-0528 1999 https://doi.org/10.4271/1999-01-0528
- Pickett , L. , Genzale , C. , Bruneaux , G. , Malbec , L. et al. Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities SAE Int. J. Engines 3 2 2010 156 181 https://doi.org/10.4271/2010-01-2106
- Pei , Y. , Davis , M.J. , Pickett , L.M. , and Som , S. Engine Combustion Network (ECN): Global Sensitivity Analysis of Spray A for Different Combustion Vessels Combustion & Flame. 162 6 2015 2337 2347
- Meijer , M. , Somers , B. , Johnson , J. , Naber , J. et al. Engine Combustion Network (ECN): Characterization and Comparison of Boundary Conditions for Different Combustion Vessels Atomization & Sprays 22 9 2012
- Pickett , L.M. and Siebers , D.L. Soot in Diesel Fuel Jets: Effects of Ambient Temperature, Ambient Density, and Injection Pressure J Combustion Flame. 138 1-2 2004 114 135
- Dec , J. Soot Distribution in a D.I. Diesel Engine Using 2-D Imaging of Laser-induced Incandescence, Elastic Scattering, and Flame Luminosity SAE Technical Paper 920115 1992 https://doi.org/10.4271/920115
- Pickett , L.M. and Siebers , D.L. An Investigation of Diesel Soot Formation Processes Using Micro-Orifices J Proceedings of the Combustion Institute. 29 1 2002 655 662
- Naber , J. and Siebers , D. Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays SAE Technical Paper 960034 1996 https://doi.org/10.4271/960034
- Du , J. , Mohan , B. , Sim , J. , Fang , T. et al. Experimental and Analytical Study on Liquid and Vapor Penetration of High-Reactivity Gasoline Using a High-Pressure Gasoline Multi-Hole Injector 163 2019 114187
- Liu , L. , Peng , Y. , Liu , D. , Han , C. , Zhao , N. , Ma , X.J.I.J.O.S. , and Dynamics , C. 2020
- Assanis , D.N. , Filipi , Z.S. , Fiveland , S.B. , and Syrimis , M. A Predictive Ignition Delay Correlation under Steady-State and Transient Operation of a Direct Injection Diesel Engine J. Eng. Gas Turbines Power. 125 2 2003 450 457
- Payri , R. , Gimeno , J. , Bracho , G. , and Vaquerizo , D. Study of Liquid and Vapor Phase Behavior on Diesel Sprays for Heavy Duty Engine Nozzles J Applied Thermal Engineering. 107 2016 365 378
- Pischinger , F. , Reuter , U. , and Scheid , E. Self-Ignition of Diesel Sprays and Its Dependence on Fuel Properties and Injection Parameters ICEF, ASME 0742-4795 1988
- Kim , D. , Martz , J. , and Violi , A. Effects of Fuel Physical Properties on Direct Injection Spray and Ignition Behavior Fuel. 180 2016 481 496
- Payri , R. , Salvador , F. , De la Morena , J. , and Pagano , V. Using a One-Dimensional Spray Model to Improve Liquid Length and Ignition Delay Estimations for Diesel Flames J Applied Thermal Engineering. 124 2017 1090 1102
- Payri , R. , Salvador , F.J. , Gimeno , J. , and De la Morena , J. Effects of Nozzle Geometry on Direct Injection Diesel Engine Combustion Process J Applied Thermal Engineering. 29 10 2009 2051 2060
- Moiz , A. , Pal , P. , Probst , D. , Pei , Y. et al. A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing SAE Int. J. Commer. Veh. 11 5 2018 291 306 https://doi.org/10.4271/2018-01-0190
- Badra , J.A. , Khaled , F. , Tang , M. , Pei , Y. et al. Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach Journal of Energy Resources Technology 143 2 2020
- Mohan , B. , Tang , M. , Badra , J. , Pei , Y. et al. Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine SAE Technical Paper 2021-01-0190 2021 https://doi.org/10.4271/2021-01-0190
- Mohapatra , C.K. , Schmidt , D.P. , Sforozo , B.A. , Matusik , K.E. et al. Collaborative Investigation of the Internal Flow and Near-Nozzle Flow of an Eight-Hole Gasoline Injector (Engine Combustion Network Spray G) International Journal of Engine Research. 1468087420918449 2020
- Bardi , M. , Payri , R. , Malbec , L.M.C. , Bruneaux , G. et al. Engine Combustion Network: Comparison of Spray Development, Vaporization, and Combustion in Different Combustion Vessels Atomization & Sprays 22 10 2012
- ECN https://ecn.sandia.gov/ecn-data-search/ June 2, 2021
- Bardi , M. , Bruneaux , G. , and Malbec , L. Study of ECN Injectors’ Behavior Repeatability with Focus on Aging Effect and Soot Fluctuations SAE Technical Paper 2016-01-0845 2016 https://doi.org/10.4271/2016-01-0845
- Hintze , J.L. and Nelson , R.D. Violin Plots: A Box Plot-Density Trace Synergism J The American Statistician. 52 2 1998 181 184
- Pedregosa , F. , Varoquaux , G. , Gramfort , A. , Michel , V. et al. Scikit-Learn: Machine Learning in Python J the Journal of machine Learning research. 12 2011 2825 2830
- Virtanen , P. , Gommers , R. , Oliphant , T.E. , Haberland , M. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python J Nature methods. 17 3 2020 261 272
- Van Der Walt , S. , Colbert , S.C. , and Varoquaux , G. The NumPy Array: A Structure for Efficient Numerical Computation J Computing in Science Engineering. 13 2 2011 22 30
- Dreyfus , S.E. Artificial Neural Networks, Back Propagation, and the Kelley-Bryson Gradient Procedure Journal of Guidance, Control, Dynamics. 13 5 1990 926 928
- Cortes , C. and Vapnik , V. Support-Vector Networks Machine Learning. 20 3 1995 273 297
- Ke , G. , Meng , Q. , Finley , T. , Wang , T. et al. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree Advances in Neural Information Processing Systems. 30 2017 3146 3154
- Prokhorenkova , L. , Gusev , G. , Vorobev , A. , Dorogush , A.V. and Gulin , A. arXiv preprint. 2017
- Huang , G.-B. , Zhu , Q.-Y. , and Siew , C.-K. Extreme Learning Machine: Theory and Applications J Neurocomputing. 70 1-3 2006 489 501