This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine
Technical Paper
2022-01-0384
ISSN: 0148-7191, e-ISSN: 2688-3627
Annotation ability available
Sector:
Language:
English
Abstract
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG.
To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts.
In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on. The present work is focused on the improvement of the turbulence sub-model, originally conceived to describe turbulence evolution in tumble-promoting engines.
The turbulence model is here developed with reference to a SI heavy-duty CNG engine derived from a diesel engine. In this architecture, due to the flat cylinder head, turbulence is generated primarily by swirl and squish flow motions unlike conventional tumble-assisted SI engines.
To extend the turbulence model, a 3D simulation campaign was carried out aiming at extracting the information for model conceptualization and validation.
The turbulence sub-model demonstrated to properly predict turbulence and swirl/tumble evolution under various operating conditions, without the need for any case-dependent tuning. It hence presented the potential for appropriately support the predictive capabilities of any combustion model for SI heavy-duty tumble- and swirl-promoting engines.
Authors
- Marco Riccardi - Università degli Studi di Napoli Federico II
- Vincenzo De Bellis - Università degli Studi di Napoli Federico II
- Lorenzo Sforza - Politecnico di Milano
- Carlo Beatrice - Istituto Motori CNR
- Fabio Bozza - Università degli Studi di Napoli Federico II
- Tommaso Lucchini - Politecnico di Milano
- Mohsen Mirzaeian - FPT Industrial SpA
- Simon Langridge - FPT Motorenforschung AG
- Valentina Fraioli - Istituto Motori CNR
- Stefano Golini - FPT Industrial SpA
Topic
Citation
Riccardi, M., De Bellis, V., Sforza, L., Beatrice, C. et al., "Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine," SAE Technical Paper 2022-01-0384, 2022, https://doi.org/10.4271/2022-01-0384.Also In
References
- https://ec.europa.eu/clima/sites/clima/files/docs/pages/vision_1_emissions_en.pdf
- Leach , F. , Kalghatgi , G. , Stone , R. , and Miles , P. The Scope for Improving the Efficiency and Environmental Impact of Internal Combustion Engines Transportation Engineering 1 2020 100005 https://doi.org/10.1016/j.treng.2020.100005
- Alamia , A. , Magnusson , I. , Johnsson , F. , and Thunman , H. Well-To-Wheel Analysis of Bio-Methane via Gasification, in Heavy Duty Engines Within the Transport Sector of the European Union Applied energy 170 2016 445 454 10.1016/j.apenergy.2016.02.001
- Blanco , H. , Nijs , W. , Ruf , J. , and Faaij , A. Potential of Power-To-Methane in the EU Energy Transition to a Low Carbon System Using Cost Optimization Applied energy 232 2018 323 340 10.1016/j.apenergy.2018.08.027
- Wheeler , J. , Stein , J. , and Hunter , G. Effects of Charge Motion, Compression Ratio, and Dilution on a Medium Duty Natural Gas Single Cylinder Research Engine SAE Int. J. Engines 7 4 2014 1650 1664 10.4271/2014-01-2363
- Johansson , B. and Olsson , K. Combustion Chambers for Natural Gas SI Engines Part I: Fluid Flow and Combustion SAE Tech. Pap. 950469 1995 10.4271/950469
- Heywood , J.B. Internal Combustion Engine Fundamentals 930 New York, Mcgraw-Hill 1988 007028637X
- Borgnakke , C. , Arpaci , V. , and Tabaczynski , R. A Model for the Instantaneous Heat Transfer and Turbulence in a Spark Ignition Engine SAE Technical Paper 800287 1980 10.4271/800287
- Morel , T. and Keribar , R. A Model for Predicting Spatially and Time Resolved Convective Heat Transfer in Bowl-In-Piston Combustion Chambers SAE Technical Paper 850204 1985 10.4271/850204
- Grasreiner , S. , Neumann , J. , Luttermann , C. , Wensing , M. et al. A Quasi-Dimensional Model of Turbulence and Global Charge Motion for Spark Ignition Engines with Fully Variable Valvetrains International Journal of Engine Research 15 7 2014 805 816 10.1177/1468087414521615
- Fogla , N. , Bybee , M. , Mirzaeian , M. , Millo , F. et al. Development of a K-k-ε Phenomenological Model to Predict In-Cylinder Turbulence SAE Int. J. Engines 10 2 2017 562 575 10.4271/2017-01-0542
- Bozza , F. , De Bellis , V. , Berni , F. , D’Adamo , A. et al. Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part I: 3D Analyses SAE Technical Paper 2018-01-0850 2018 10.4271/2018-01-0850
- De Bellis , V. , Bozza , F. , Fontanesi , S. , Severi , E. et al. Development of a Phenomenological Turbulence Model through a Hierarchical 1D/3D Approach Applied to a VVA Turbocharged Engine SAE Int. J. Engines 9 1 2016 506 519 10.4271/2016-01-0545
- Bozza , F. , Teodosio , L. , De Bellis , V. , Fontanesi , S. et al. Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion SAE Technical Paper 2018-01-0856 2018 10.4271/2018-01-0856
- Bozza , F. , Teodosio , L. , De Bellis , V. , Fontanesi , S. et al. A Refined 0D Turbulence Model to Predict Tumble and Turbulence in SI Engines SAE Int. J. Engines 12 1 2019 10.4271/03-12-01-0002
- Paredi , D. , Lucchini , T. , D’Errico , G. , Onorati , A. et al. Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications SAE Technical Paper 2017-24-0026 2017 10.4271/2017-24-0026
- Lucchini , T. , D’Errico , G. , Onorati , A. , Bonandrini , G. et al. Development and Application of a Computational Fluid Dynamics Methodology to Predict Fuel-Air Mixing and Sources of Soot Formation in Gasoline Direct Injection Engines International Journal of Engine Research 15 5 2014 581 596
- Sforza , L. , Lucchini , T. , Gianetti , G. , and D'Errico , G. Development and Validation of SI Combustion Models for Natural-Gas Heavy-Duty Engines SAE Technical Paper 2019-24-0096 2019 10.4271/2019-24-0096
- Lucchini , T. , Della Torre , A. , D’Errico , G. , Montenegro , G. et al. Automatic Mesh Generation for CFD Simulations of Direct-Injection Engines SAE Technical Paper 2015-01-0376 2015 10.4271/ 2015-01-0376
- Lucchini , T. , D'Errico , G. , Paredi , D. , Sforza , L. et al. CFD Modeling of Gas Exchange, Fuel-Air Mixing and Combustion in Gasoline Direct-Injection Engines SAE Technical Paper 2019-24-0095 2019 10.4271/2019-24-0095
- Franken , T. , Sommerhoff , A. , Willems , W. , Matrisciano , A. et al. Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model SAE Technical Paper 2017-01-0516 2017 10.4271/2017-01-0516