This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Experimental Investigation of a Coolant Flow Rate Variation on Knock Tendency in a Small S.I Engine
Technical Paper
2021-24-0053
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The dynamic effects of a coolant flow rate variation on knock tendency are experimentally investigated on a small S.I. engine. The analysis concerns the transient response of the unburned gas temperature and the knock onset to a step variation in load and coolant flow rate. This phenomenological investigation aims at preventing knock through a proper thermal management as an efficient alternative to the currently adopted strategies. Moreover, the proposed approach may result particularly useful for hybrid-electric powertrain, where the engine is expected to operate in the highest efficiency region by adopting high compression ratios and full stoichiometric map.
The analysis is carried out through an experimental campaign, where the control of cylinder wall temperature is achieved by means of an electrically driven water pump. The spark advance and the air/fuel ratio have been properly varied in order to operate with advanced spark timing and stoichiometric mixture at full load. A comparison with the standard conditions involving the adoption of the belt-driven pump and the production ECU combustion parameters is included.
Results demonstrate that, under transient conditions, an increase in coolant flow rate retards the knock onset, thus allowing the adoption of higher spark advance and the use of stoichiometric mixture at full load. Under these conditions, an increase in engine efficiency of about 3%, without penalizing engine performance, is achieved.
Authors
Topic
Citation
Falbo, L., Perrone, D., Castiglione, T., Algieri, A. et al., "Experimental Investigation of a Coolant Flow Rate Variation on Knock Tendency in a Small S.I Engine," SAE Technical Paper 2021-24-0053, 2021, https://doi.org/10.4271/2021-24-0053.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Annual European Union Greenhouse Gas Inventory 1990-2012 and Inventory Report 2014 2014
- Fraser , N. , Blaxill , H. , Lumsden , G. , and Bassett , M. Challenges for Increased Efficiency through Gasoline Engine Downsizing SAE Int. J. Eng. 2 2009 991 1008
- Amman , H. , Alger , T. , and Mehta , D. The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines SAE Int. J. Eng. 4 2011 235 245 10.4271/2011-01-0339
- Zhen , X. , Wang , Y. , Xu , S. , Zhu , Y. et al. The Engine Knock Analysis - An Overview Appl Energy 92 2012 628 636 https://doi.org/10.1016/j.apenergy.2011.11.079
- Alagumalai , A. Internal Combustion Engines: Progress and Prospects Renew Sustain Energy 38 2014 561 571 https://doi.org/10.1016/j.rser.2014.06.014
- Lisbona , M.G. Propulsion System for Future Mobility FCA View Plenary Lectures, ICE2019, 14th International Conference on Engines and Vehicles Capri
- Abu-Qudais , M. Exhaust Gas Temperature for Knock Detection and Control in Spark Ignition Engine Energy Convers Manage 37 1996 1383 1392 https://doi.org/10.1016/0196-8904(95)00221-9
- Grandin , B. , Denbratt , I. , Bood , J. , Brackmann , C. et al. Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures with and Without EGR SAE Technical Paper 2002-01-0239 2002 https://doi.org/10.4271/2002-01-0239
- Ayala , F.A. , Gerty , M.D. , and Heywood , J.B. Effects of Combustion Phasing, Relative Air-Fuel Ratio, Compression Ratio and Load on SI Engine Efficiency SAE Transactions 115 2006 177 195
- Lee , S. , Park , S. , Kim , C. , and Kim , Y.M. Comparative Study on EGR and Lean Burn Strategies Employed in an SI Engine Fueled by Low Calorific Gas Appl Energy 129 2014 10 16 https://doi.org/10.1016/j.apenergy.2014.04.082
- Lattimore , T. , Wang , C. , Xu , H. , and Wyszynski , M.L. Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine Appl Energy 161 2016 256 267 https://doi.org/10.1016/j.apenergy.2015.09.080
- Wei , H. , Zhu , T. , Shu , G. , and Tan , L. Gasoline Engine Exhaust Gas Recirculation - A Review Appl Energy 99 2012 534 544 https://doi.org/10.1016/j.apenergy.2012.05.011
- Bozza , F. , De Bellis , V. , and Teodosio , L. Potentials of Cooled EGR and Water Injection for Knock Resistance and Fuel Consumption Improvements of Gasoline Engines Appl Energy 169 2016 112 125 http://dx.doi.org/10.1016/j.apenergy.2016.01.129
- Hoppe , F. , Thewes , M. , Baumgarten , H. , and Dohmen , J. Water Injection for Gasoline Engines: Potentials, Challenges, and Solutions Int J Eng Res 17 1 2016 86 96 https://doi.org/10.1177/1468087415599867
- Boretti , A. Water Injection in Directly Injected Turbocharged Spark Ignition Engines Appl Therm Eng 52 1 2013 62 68 https://doi.org/10.1016/j.applthermaleng.2012.11.016
- Teodosio , L. , De Bellis , V. , Bozza , F. , and Tufano , D. Numerical Study of the Potential of a Variable Compression Ratio Concept Applied to a Downsized Turbocharged VVA Spark Ignition Engine SAE Technical Paper 2017-24-0015 2017 https://doi.org/10.4271/2017-24-0015
- Teodosio , L. , Pirrello , D. , Berni , F. , and De Bellis , V. Impact of Intake Valve Strategies on Fuel Consumption and Knock Tendency of a Spark Ignition Engine Appl Energy 216 2018 91 104 https://doi.org/10.1016/j.apenergy.2018.02.032
- Takahashi , D. , Nakata , K. , and Yoshihara , Y. Engine Thermal Control for Improving Engine Thermal Efficiency and Antiknocking Quality SAE Technical Paper 2012-01-0377 2012 https://doi.org/10.4271/2012-01-0377
- Asif , M. , Giles , K. , Lewis , A. , Akehurst , S. et al. Influence of Coolant Temperature and Flow Rate and Air Flow on Knock Performance of a Downsized Highly Boosted Direct Injection Spark Ignition Engine SAE Technical Paper 2017-01-0664 2017 https://doi.org/10.4271/2017-01-0664
- Algieri , A. , Bova , S. , De Bartolo , C. , and Nigro , A. Numerical and Experimental Analysis of the Intake Flow in a High Performance Four-Stroke Motorcycle Engine J. Eng. Gas Turbines Power 129 4 2007
- Algieri , A. , Bova , S. , and De Bartolo , C. Influence of Valve Lift and Throttle Angle on Intake Flow in a High Performance Four-Stroke Motorcycle Engine J. Eng. Gas Turbines Power 128 4 2006 934 941
- Nishino , T. , Senba , H. , and Murakami , N. Study of Engine Cooling Technologies for Knock Suppression in Spark Ignition Engines Mitsubishi Motors Technical, Review 2004 2004 17 22
- Shih , S. , Itano , E. , Xin , J. , Kawamoto , M. et al. Engine Knock Toughness Improvement Through Water Jacket Optimization SAE Technical Paper 2003-01-3259 2003 2003 https://doi.org/10.4271/2003-01-3259
- Fukuda , Y. , Tawa , H. , and Makise , A. Increase of Knock Limit in Outboard Motor Through Employment of Dual Control Direct Cooling System Honda R D Tech. Rev. 16 2004 121 126
- Finlay , I.C. , Tugwell , W. , Biddulp , T. , and Marshall , R.A. The Influence of Coolant Temperature on the Performance of a Four Cylinder 1100cc Engine Employing a Dual Circuit Cooling System Heat and Mass Transfer in Gasoline and Diesel Engine 1989
- Cho , S. , Song , C. , Oh , S. , Min , K. et al. An Experimental Study on the Knock Mitigation Effect of Coolant and Thermal Boundary Temperatures in Spark Ignited Engines SAE Technical Paper 2018-01-0213 2018 https://doi.org/10.4271/2018-01-0213
- Pizzonia , F. , Castiglione , T. , and Bova , S. A Robust Model Predictive Control for Efficient Thermal Management of Internal Combustion Engines Appl Energy 169 2016 555 566 https://doi.org/10.1016/j.apenergy.2016.02.063
- Castiglione , T. , Perrone , D. , Algieri , A. , and Bova , S. A Contribution to Improving the Thermal Management of Powertrain Systems SAE Int. J. Engines 13 2020 35 48 https://doi.org/10.4271/03-13-01-0003
- Castiglione , T. , Rovense , F. , Algieri , A. , and Bova , S. Powertrain Thermal Management for CO2 Reduction SAE Technical Paper 2018-37-0020 2018 https://doi.org/10.4271/2018-37-0020
- Perrone , D. , Falbo , L. , Castiglione , T. , and Bova , S. Knock Mitigation by Means of Coolant Control SAE Technical Paper 2019-24-0183 2019 https://doi.org/10.4271/2019-24-0183
- Castiglione , T. , Falbo , L. , Perrone , D. , and Bova , S. Cooling On-Demand for Knock Prevention in Spark Ignition Engines: An Experimental Analysis Appl Therm Eng 195 2021 117161 https://doi.org/10.1016/j.appltehrmaleng.2021.117161
- Castiglione , T. , Pizzonia , F. , Piccione , R. , and Bova , S. Detecting the Onset of Nucleate Boiling in Internal Combustion Engines Appl Energy 164 2016 332 340 http://dx.doi.org/10.1016/j.apenergy.2015.11.083
- McKenzie , J. and Cheng , W.K. The Anatomy of Knock SAE Technical Paper 2016-01-0704 2016 https://doi.org/10.4271/2016-01-0704
- Brunt , M. , Pond , C. , and Biundo , J. Gasoline Engine Knock Analysis using Cylinder Pressure Data SAE Technical Paper 980896 1998 https://doi.org/10.4271/980896
- Galloni , E. , Fontana , G. , Staccone , S. Numerical and Experimental Characterization of Knock Occurrence in a Turbo-Charged Spark-Ignition Engine Energy Conversion and Management 85 2014 417 424 0196-8904 https://doi.org/10.1016/j.enconman.2014.05.054
- Ferguson , C. and Kirkpatrick , A.T. Internal Combustion Engines, Applied Thermosciences Third New York John Wiley & Sons 2016 978-1-118-53331-4
- Heywood , J.B. Internal Combustion Engine Fundamentals Second Edition McGraw-Hill 2018
- AVL Software www.avl.com/BOOST