This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine
Technical Paper
2021-24-0040
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively. The two isobaric combustion cases, achieved using multiple injections, are maintained at the CDC PMP level of 50 bar for the low-pressure case (IsoL) and CDC PCP level of 70 bar for the high-pressure case (IsoH). For each operating condition, soot luminosity signals are captured at a frame rate of 20 kHz, and a semi-quantitative velocity flow-field is obtained from FIV post-processing. Consistent with previous metal engine experiments, isobaric combustion - in particular IsoH, resulted in similar gross indicated efficiency, lower heat losses but higher exhaust losses, compared to CDC. The soot luminosity images of CDC show initial signals originated close to the bowl-wall for certain jets while for the isobaric combustion, the flames corresponding to each jet are clearly distinguished during the earlier flame development process. The vector field distribution within the flames shows the transition of flame-wall impingement to flame-flame interaction regions between the neighboring jets for each combustion mode. Furthermore, higher flame-flame interaction regions and uniform distribution of signals around the combustion chamber for isobaric combustion, justifying higher soot formation and lower heat transfer losses, respectively, compared to CDC.
Authors
Topic
Citation
Goyal, H., Panthi, N., Ben Houidi, M., AlRamadan, A. et al., "Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine," SAE Technical Paper 2021-24-0040, 2021, https://doi.org/10.4271/2021-24-0040.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- EPA 2021 https://www.epa.gov/automotive-trends/download-automotive-trends-report#Full%20Report
- IEA 2020 https://www.iea.org/reports/world-energy-outlook-2020
- Kalghatgi , G. Development of Fuel/Engine Systems - The Way Forward to Sustainable Transport Engineering 5 3 2019 510 518 10.1016/j.eng.2019.01.009
- Reitz , R.D. , Ogawa , H. , Payri , R. , Fansler , T. et al. IJER editorial: The Future of the Internal Combustion Engine Int. J. Engine Res. 21 1 2020 3 10 10.1177/1468087419877990
- Anders , H. , Christensen , M. , Johansson , B. , Franke , A. et al. A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging SAE Technical Paper 1999-01-3680 1999 https://doi.org/10.4271/1999-01-3680
- Christensen , M. and Johansson , B. Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel SAE Technical Paper 2000-01-1835 2000 https://doi.org/10.4271/2000-01-1835
- Hultqvist , A. , Christensen , M. , Johansson , B. , Richter , M. et al. The HCCI Combustion Process in a Single Cycle - Speed Fuel Tracer LIF and Chemiluminescence Imaging SAE Technical Paper 2002-01-0424 2002 https://doi.org/10.4271/2002-01-0424
- Haas , S. , Bargende , M. , and Berner , H. Ideal Homogeneous Combustion Versus Partly Homogeneous Combustion for PC Diesel Engines SAE Technical Paper 2007-24-0016 2007 https://doi.org/10.4271/2007-24-0016
- Haag , J. , Kock , F. , Chiodi , M. , Mack , O. et al. Development Approach for the Investigation of Homogeneous Charge Compression Ignition in a Free-Piston Engine SAE Technical Paper 2013-24-0047 2013 https://doi.org/10.4271/2013-24-0047
- Splitter , D. , Hanson , R. , Kokjohn , S. , and Reitz , R. Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels SAE Technical Paper 2011-01-0363 2011 https://doi.org/10.4271/2011-01-0363
- Kokjohn , S. , Reitz , R. , Splitter , D. , and Musculus , M. Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence SAE Int. J. Engines 5 2 2012 248 269 https://doi.org/10.4271/2012-01-0375
- Kokjohn , S.L. , Musculus , M.P.B. , and Reitz , R.D. Evaluating Temperature and Fuel Stratification for Heat-Release Rate Control in a Reactivity-Controlled Compression-Ignition Engine Using Optical Diagnostics and Chemical Kinetics Modeling Combust. Flame 162 6 2015 2729 2742 10.1016/j.combustflame.2015.04.009
- Goyal , H. , Kook , S. , and Ikeda , Y. The Influence of Fuel Ignition Quality and First Injection Proportion on Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Engine Fuel 235 2019 1207 1215 10.1016/j.fuel.2018.08.090
- Goyal , H. and Kook , S. Ignition Process of Gasoline Compression Ignition (GCI) Combustion in a Small-Bore Optical Engine Fuel 256 2019 115844 10.1016/j.fuel.2019.115844
- Goyal , H. , Zhang , Y. , Kook , S. , Kim , K.S. et al. Low- to High-Temperature Reaction Transition in a Small-Bore Optical Gasoline Compression Ignition (GCI) Engine SAE Int. J. Engines 12 5 2019 https://doi.org/10.4271/03-12-05-0031
- Heywood , J.B. Internal Combustion Engine Fundamentals 1st New York McGraw-Hill 1988
- Okamoto , T. and Uchida , N. New Concept for Overcoming the Trade-Off Between Thermal Efficiency, Each Loss and Exhaust Emissions in a Heavy Duty Diesel Engine SAE Int. J. Engines 9 2 2016 https://doi.org/10.4271/2016-01-0729
- Babayev , R. , Ben Houidi , M. , Andersson , A. , and Johansson , B. Isobaric Combustion: A Potential Path to High Efficiency, in Combination with the Double Compression Expansion Engine (DCEE) Concept SAE Technical Paper 2019-01-0085 2019 https://doi.org/10.4271/2019-01-0085
- Goyal , H. , Dyuisenakhmetov , A. , Ben Houidi , M. , Johansson , B. et al. The Effect of Engine Speed, Exhaust Gas Recirculation, and Compression Ratio on Isobaric Combustion SAE Int. J. Engines 13 5 2020 https://doi.org/10.4271/03-13-05-0038
- Babayev , R. , Ben Houidi , M. , Shankar , V. , Shankar , B. et al. Injection Strategies for the Isobaric Combustion SAE Technical Paper 2019-01-2267 2019 https://doi.org/10.4271/2019-01-2267
- Dyuisenakhmetov , A. , Goyal , H. , Ben Houidi , M. , Babayev , R. et al. Isobaric Combustion at a Low Compression Ratio SAE Technical Paper 2020-01-0797 2020 https://doi.org/10.4271/2020-01-0797
- Liu , X. , Aljabri , H. , Mohan , B. , Babayev , R. et al. A Numerical Investigation of Isobaric Combustion Strategy in a Compression Ignition Engine Int. J. Engine Res. 2020 10.1177/1468087420970376
- Nyrenstedt , G. , Tang , Q. , Sampath , R. , Alramadan , A. et al. A Comparative Study of Isobaric Combustion and Conventional Diesel Combustion in both All-Metal and Optical Engines Fuel 295 2021 120638 10.1016/j.fuel.2021.120638
- Al Ramadan , A. , Nyrenstedt , G. , Ben Houidi , M. , and Johansson , B. Optical Diagnostics of Isooctane and n-Heptane Isobaric Combustion SAE Technical Paper 2020-01-1126 2020 https://doi.org/10.4271/2020-01-1126
- Shioji , M. , Kimoto , T. , Okamoto , M. , and Ikegami , M. An Analysis of Diesel Flame by Picture Processing JSME Int. J. 32 3 1989 434 442 10.1299/jsmeb1988.32.3_434
- Won , Y.-H. , Kamimoto , T. , and Kosaka , H. A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging SAE Technical Paper 920114 1992 https://doi.org/10.4271/920114
- Dembinski , H.W.R. and Angstrom , H. Optical Study of Swirl during Combustion in a CI Engine with Different Injection Pressures and Swirl Ratios Compared with Calculations SAE Technical Paper 2012-01-0682 2012 https://doi.org/10.4271/2012-01-0682
- Winterbone , D. , Yates , D. , Clough , E. , Rao , K. et al. Combustion in High-Speed Direct Injection Diesel Engines - A Comprehensive Study Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 208 4 1994 223 240
- Dembinski , H. Swirl and Injection Pressure Effect on Post- Oxidation Flow Pattern Evaluated with Combustion Image Velocimetry, CIV, and CFD Simulation SAE Technical Paper 2013-01-2577 2013 https://doi.org/10.4271/2013-01-2577
- Yang , J. , Rao , L. , Zhang , Y. , Silva , C. Kook , S. Flame Image Velocimetry Analysis of Reacting Jet Flow Fields with a Variation of Injection Pressure in a Small-Bore Diesel Engine Int. J. Engine Res. 2020 10.1177/1468087420960616
- Zhao , M. and Kaiser , S.A. Optical Diagnostics for Knock in Compression-Ignition Engines via High-Speed Imaging SAE Int. J. Engines 11 6 2018 903 918 https://doi.org/10.4271/2018-01-0631
- Goyal , H. , Nyrenstedt , G. , Cabezas , K.M. , Panthi , N. et al. A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept SAE Technical Paper 2021-01-0444 2021 https://doi.org/10.4271/2021-01-0444
- Jimenez , C.D.A. , Nyrenstedt , G. , Goyal , H. , Andersson , A. et al. Effects of Multiple Injectors on Spray Characteristics and Efficiency in Internal Combustion Engines SAE Technical Paper 2021-01-0501 2021 https://doi.org/10.4271/2021-01-0501
- Goyal , H. , Jiminez , C.A. , Nyrenstedt , G. , Im , H. et al. Energy Distribution Analysis of Multiple Injectors for the Double Compression Expansion Engine Concept SAE Int. J. Engines 14 6 2021 https://doi.org/10.4271/03-14-06-0048
- Keane , R.D. and Adrian , R.J. Optimization of Particle Image velocimeters. I. Double Pulsed Systems Meas. Sci. Technol. 1 11 1990 1202 1215 10.1088/0957-0233/1/11/013
- Westerweel , J. and Scarano , F. Universal Outlier Detection for PIV Data Exp. Fluids 39 2005 1096 1100 10.1007/s00348-005-0016-6
- Rao , L. and Kook , S. Optimisation of Image Processing Parameters for Flame Image Velocimetry (FIV) Measurement in a Single-Cylinder, Small-Bore Optical Diesel Engine SAE Int. J. Adv. Curr. Pract. Mobil. 1 3 2019 1311 1324 https://doi.org/10.4271/2019-01-0719
- Woo , C. , Goyal , H. , Kook , S. , Hawkes , E.R. et al. Double Injection Strategies for Ethanol-Fuelled Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine SAE Technical Paper 2016-01-2303 2016 https://doi.org/10.4271/2016-01-2303
- Goyal , H. , Kook , S. , Hawkes , E. , Chan , Q.N. et al. Influence of Engine Speed on Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine SAE Technical Paper 2017-01-0742 2017 https://doi.org/10.4271/2017-01-0742
- Goyal , H. , Liu , X. , Kook , S. , and Ikeda , Y. Efficiency and Fuel Economy Benefits of Double Injection Strategies in a Gasoline Compression Ignition (GCI) Engine FISITA World Automotive Congress 2018
- Le , M.K. , Zhang , R. , Rao , L. , Kook , S. et al. The Development of Hydroxyl and Soot in a Methyl Decanoate-fuelled Automotive-size Optical Diesel Engine Fuel 166 2016 320 332 10.1016/j.fuel.2015.11.006
- Rao , L. , Zhang , Y. , Kim , D. , Su , H.C. et al. Effect of After Injections on Late Cycle Soot Oxidation in a Small-bore Diesel Engine Combust. Flame 191 2018 513 526 10.1016/j.combustflame.2018.02.014