This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Instantaneous Brain Strain Estimation for Automotive Head Impacts
via
Deep Learning
Technical Paper
2021-22-0006
Annotation ability available
Sector:
Language:
English
Abstract
Efficient brain strain estimation is critical for routine application of a head
injury model. Lately, a convolutional neural network (CNN) has been successfully
developed to estimate spatially detailed brain strains instantly and accurately
in contact sports. Here, we extend its application to automotive head impacts,
where impact profiles are typically more complex with longer durations. Head
impact kinematics (N=458) from two public databases were used to generate
augmented impacts (N=2694). They were simulated using the anisotropic Worcester
Head Injury Model (WHIM) V1.0, which provided baseline elementwise peak maximum
principal strain (MPS). For each augmented impact, rotational velocity
(vrot) and the corresponding rotational
acceleration (arot) profiles were concatenated as
static images to serve as CNN input. Three training strategies were evaluated:
1) “baseline”, using random initial weights; 2) “transfer learning”, using
weight transfer from a previous CNN model trained on head impacts drawn from
contact sports; and 3) “combined training”, combining previous training data
from contact sports (N=5661) for training. The combined training achieved the
best performances. For peak MPS, the CNN achieved a coefficient of determination
(R2) of 0.932 and root mean squared error (RMSE)
of 0.031 for the real-world testing dataset. It also achieved a success rate of
60.5% and 94.8% for elementwise MPS, where the linear regression slope,
k, and correlation coefficient, r, between
estimated and simulated MPS did not deviate from 1.0 (when identical) by more
than 0.1 and 0.2, respectively. Cumulative strain damage measure (CSDM) from the
CNN estimation was also highly accurate compared to those from direct simulation
across a range of thresholds (R2 of 0.899-0.943 with
RMSE of 0.054-0.069). Finally, the CNN achieved an average k
and r of 0.98±0.12 and 0.90±0.07, respectively, for six
reconstructed car crash impacts drawn from two other sources independent of the
training dataset. Importantly, the CNN is able to efficiently estimate
elementwise MPS with sufficient accuracy while conventional kinematic injury
metrics cannot. Therefore, the CNN has the potential to supersede current
kinematic injury metrics that can only approximate a global peak MPS or CSDM.
The CNN technique developed here may offer enhanced utility in the design and
development of head protective countermeasures, including in the automotive
industry. This is the first study aimed at instantly estimating spatially
detailed brain strains for automotive head impacts, which employs >8.8
thousand impact simulations generated from ~1.5 years of nonstop computations on
a high-performance computing platform.
Authors
- Shaoju Wu - Department of Biomedical Engineering, Worcester Polytechnic
- Wei Zhao - Department of Biomedical Engineering, Worcester Polytechnic
- Saeed Barbat - The Ford Company, Dearborn, MI 48121, USA
- Jesse Ruan - Tianjin University of Science and Technology, Tianjin, 30022
- Songbai Ji - Department of Biomedical Engineering, Worcester Polytechnic
Topic
Citation
Wu, S., Zhao, W., Barbat, S., Ruan, J. et al., "Instantaneous Brain Strain Estimation for Automotive Head ImpactsAlso In
References
- Alshareef , A. , Giudice , J.S. , Forman , J. , Salzar , R.S. , Panzer , M.B. 2018 A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry J. Neurotrauma 35 780 789 https://doi.org/10.1089/neu.2017.5362
- Atsumi , N. , Nakahira , Y. , Tanaka , E. , Iwamoto , M. 2018 Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction Ann. Biomed. Eng. 46 736 748 https://doi.org/10.1007/s10439-018-1988-8
- Bailey , A.M. , Sanchez , E.J. , Park , G. , Gabler , L.F. , Funk , J.R. , Crandall , J.R. , Wonnacott , M. , Withnall , C. , Myers , B.S. , Arbogast , K.B. 2020 Development and Evaluation of a Test Method for Assessing the Performance of American Football Helmets Ann. Biomed. Eng. 48 2566 2579 https://doi.org/10.1007/s10439-020-02626-6
- Bian , K. , Mao , H. 2020 Mechanisms and variances of rotation-induced brain injury: a parametric investigation between head kinematics and brain strain Biomech. Model. Mechanobiol. 1 19 https://doi.org/10.1007/s10237-020-01341-4
- Bigler , E.D. , Maxwell , W.L. 2012 Neuropathology of mild traumatic brain injury: Relationship to neuroimaging findings Brain Imaging Behav. 6 108 136 https://doi.org/10.1007/s11682-011-9145-0
- Bland , M.L. , McNally , C. , Zuby , D.S. , Mueller , B.C. , Rowson , S. 2020 Development of the STAR Evaluation System for Assessing Bicycle Helmet Protective Performance Ann. Biomed. Eng. 48 47 57 https://doi.org/10.1007/s10439-019-02330-0
- Botev , Z. , Ridder , A. 2017
- Bourdet , N. , Deck , C. , Trog , A. , Meyer , F. , Noblet , V. , Willinger , R. 2021 Deep Learning methods applied to the assessment of Brain Injury Risk Proceedings of International Research Conference on the Biomechanics of Impacts. Online Virtual Conference IRC-21-81
- Centers for Disease Control and Prevention 2021 https://www.cdc.gov/traumaticbraininjury/get_the_facts.html
- Chan , D. , Knutsen , Andrew K. , Lu , Y.-C. , Yang , S.H. , Magrath , E. , Wang , W.-T. , Bayly , P. V. , Butman , J.A. , Pham , D.L. 2018 Statistical characterization of human brain deformation during mild angular acceleration measured in vivo by tagged MRI J. Biomech. Eng. 140 1 13 https://doi.org/doi:10.1115/1.4040230
- Dao , T.T. 2019 From deep learning to transfer learning for the prediction of skeletal muscle forces Med. Biol. Eng. Comput. 57 1049 1058 https://doi.org/10.1007/s11517-018-1940-y
- Fahlstedt , M. , Abayazid , F. , Panzer , M.B. , Trotta , A. , Zhao , W. , Ghajari , M. , Gilchrist , M.D. , Ji , S. , Kleiven , S. , Li , X. , Annaidh , A.N. , Halldin , P. 2021 Ranking and Rating Bicycle Helmet Safety Performance in Oblique Impacts Using Eight Different Brain Injury Models Ann. Biomed. Eng. 1–13 https://doi.org/10.1007/s10439-020-02703-w
- Franklyn , M. , Fildes , B. , Zhang , L. , King , Y. , Sparke , L. 2005 Analysis of finite element models for head injury investigation: reconstruction of four real-world impacts Stapp Car Crash J. 49 1 32
- Gabler , L.F. , Crandall , J.R. , Panzer , M.B. 2018 Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics Ann. Biomed. Eng. 46 1 14 10.1007/s10439-018-2015-9
- Gabler , L.F. , Crandall , J.R. , Panzer , M.B. 2018 Development of a Second-Order System for Rapid Estimation of Maximum Brain Strain Ann. Biomed. Eng. 1–11 https://doi.org/10.1007/s10439-018-02179-9
- Gabler , L.F. , Crandall , J.R. , Panzer , M.B. 2016 Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions Ann. Biomed. Eng. 44 3705 3718 https://doi.org/10.1007/s10439-016-1697-0
- Gabler , L.F. , Joodaki , H. , Crandall , J.R. , Panzer , M.B. 2018 Development of a Single-Degree-of-Freedom Mechanical Model for Predicting Strain-Based Brain Injury Responses J. Biomech. Eng. 140 031002 https://doi.org/10.1115/1.4038357
- Gabrieli , D. , Vigilante , N.F. , Scheinfeld , R. , Rifkin , J.A. , Schumm , S.N. , Wu , T. , Gabler , L.F. , Panzer , M.B. , Meaney , D.F. 2020 A Multibody Model for Predicting Spatial Distribution of Human Brain Deformation following Impact Loading J. Biomech. Eng. 142 91015 91016 https://doi.org/10.1115/1.4046866
- Garimella , H.T. , Menghani , R.R. , Gerber , J.I. , Sridhar , S. , Kraft , R.H. 2019 Embedded Finite Elements for Modeling Axonal Injury Ann. Biomed. Eng. 47 1 19 https://doi.org/10.1007/s10439-018-02166-0
- Gehre , C. , Gades , H. , Wernicke , P. 2009 Objective rating of signals using test and simulation responses 21st Enhanced Safety of Vehicles Stuttgart, Germany, Germany
- Ghajari , M. , Hellyer , P.J. , Sharp , D.J. 2017 Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology Brain 140 333 343 https://doi.org/10.1093/brain/aww317
- Ghazi , K. , Wu , S. , Zhao , W. , Ji , S. 2021 Instantaneous Whole-Brain Strain Estimation in Dynamic Head Impact J. Neurotrauma 38 1023 1035 https://doi.org/10.1089/neu.2020.7281
- Ghazi , K. , Wu , S. , Zhao , W. , Ji , S. Effective Head Impact Kinematics to Preserve Brain Strain Ann. Biomed. Eng. 2021 1 14 https://doi.org/10.1007/S10439-021-02840-W
- Giordano , C. , Kleiven , S. 2016 Development of an Unbiased Validation Protocol to Assess the Biofidelity of Finite Element Head Models used in Prediction of Traumatic Brain Injury Stapp Car Crash J. 60 363 471
- Giordano , C. , Zappalà , S. , Kleiven , S. 2017 Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability Biomech. Model. Mechanobiol. 16 1269 1293 https://doi.org/10.1007/s10237-017-0887-5
- Greenwald , R.M. , Gwin , J.T. , Chu , J.J. , Crisco , J.J. 2008 Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure Neurosurgery 62 789 798 https://doi.org/10.1227/01.neu.0000318162.67472.ad.Head
- Guettler , A.J. 2018 Quantifying the Response of Relative Brain/Skull Motion to Rotational Input in the PMHS Head Virginia Polytechnic Institute and State University
- Guettler , A.J. , Ramachandra , R. , Bolte , J. , Hardy , W.N. 2018 Kinematics Response of the PMHS Brain to Rotational Loading of the Head: Development of Experimental Methods and Analysis of Preliminary Data SAE Technical Paper. 1 14 https://doi.org/10.4271/2018-01-0547
- Hardy , W.N. , Khalil , T.B. , King , A.I. 1994 Literature review of head injury biomechanics Int. J. Impact Eng. 15 561 586 https://doi.org/10.1016/0734-743X(94)80034-7
- Hardy , W.N. , Mason , M.J. , Foster , C.D. , Shah , C.S. , Kopacz , J.M. , Yang , K.H. , King , A.I. , Bishop , J. , Bey , M. , Anderst , W. , Tashman , S. 2007 A study of the response of the human cadaver head to impact Stapp Car Crash J. 51 17 80 https://doi.org/10.4271/2019-22-0001
- Hardy , W.N.N. , Foster , C.D. , Mason , M.J. , Yang , K.H. , King , A.I. , Tashman , S. 2001 Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray Stapp Car Crash J. 45 337 368 https://doi.org/10.4271/2001-22-0016
- Hernandez , F. , Wu , L.C. , Yip , M.C. , Laksari , K. , Hoffman , A.R. , Lopez , J.R. , Grant , G.A. , Kleiven , S. , Camarillo , D.B. 2016 Erratum to: Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury Annals of Biomedical Engineering 43,8 2015 1918 1934 10.1007/s10439-014-1212-4 Ann. Biomed. Eng. 44 828 829 https://doi.org/10.1007/s10439-015-1487-0
- Hernandez , F. , Wu , L.C. , Yip , M.C. , Laksari , K. , Hoffman , A.R. , Lopez , J.R. , Grant , G.A. , Kleiven , S. , Camarillo , D.B. 2015 Six Degree-of-Freedom Measurements of Human Mild Traumatic Brain Injury Ann. Biomed. Eng. 43 1918 1934 https://doi.org/10.1007/s10439-014-1212-4
- Hyder , A.A. , Wunderlich , C.A. , Puvanachandra , P. , Gururaj , G. , Kobusingye , O.C. 2007 The impact of traumatic brain injuries: A global perspective NeuroRehabilitation. https://doi.org/10.3233/nre-2007-22502
- Ji , S. , Margulies , S.S. 2007 In vivo pons motion within the skull J. Biomech. 40 https://doi.org/10.1016/j.jbiomech.2005.11.009
- Ji , S. , Zhao , W. 2015 A Pre-computed Brain Response Atlas for Instantaneous Strain Estimation in Contact Sports Ann. Biomed. Eng. 43 1877 1895 https://doi.org/10.1007/s10439-014-1193-3
- Ji , S. , Zhao , W. , Ford , J.C. , Beckwith , J.G. , Bolander , R.P. , Greenwald , R.M. , Flashman , L.A. , Paulsen , K.D. , McAllister , T.W. 2015 Groupwise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion J. Neurotrauma 32 441 454 https://doi.org/10.1089/neu.2013.3268
- Ji , S. , Zhao , W. , Li , Z. , McAllister , T.W. 2014 Head impact accelerations for brain strain-related responses in contact sports: a model-based investigation Biomech. Model. Mechanobiol. 13 1121 1136 https://doi.org/10.1007/s10237-014-0562-z
- Ji , S. , Zhu , Q. , Dougherty , L. , Margulies , S.S.S. 2004 In Vivo Measurements of Human Brain Displacement Stapp Car Crash J. 48 527 539
- Kelkar , R. , Hasija , V. , Takhounts , E.G. 2020 Effect of Angular Acceleration on Brain Injury Metric IRCOBI. Munich, Germany IRC-20-65
- Kimpara , H. , Iwamoto , M. 2012 Mild traumatic brain injury predictors based on angular accelerations during impacts Ann. Biomed. Eng. 40 114 126 https://doi.org/10.1007/s10439-011-0414-2
- Kimpara , H. , Nakahira , Y. , Iwamoto , M. , Rowson , S. , Duma , S. 2011 Head injury prediction methods based on 6 degree of freedom head acceleration measurements during impact Int. J. Automot. Eng. 2 13 19
- King , A.I. , Yang , K.H. , Zhang , L. , Hardy , W. , Viano , D.C. 2003 Is head injury caused by linear or angular acceleration? IRCOBI Conference Lisbon, Portugal, Portugal 1 12
- Kleiven , S. 2007 Predictors for Traumatic Brain Injuries Evaluated through Accident Reconstructions Stapp Car Crash J. 51 81 114 https://doi.org/2007-22-0003
- Knutsen , A.K. , Gomez , A.D. , Gangolli , M. , Wang , W.-T. , Chan , D. , Lu , Y.-C. , Christoforou , E. , Prince , J.L. , Bayly , P. V. , Butman , J.A. , Pham , D.L. 2020 In vivo estimates of axonal stretch and 3D brain deformation during mild head impact Brain Multiphysics 100015 https://doi.org/10.1016/j.brain.2020.100015
- Knutsen , A.K. , Magrath , E. , McEntee , J.E. , Xing , F. , Prince , J.L. , Bayly , P. V. , Butman , J. a., Pham, D.L. 2014 Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence J. Biomech. 47 3475 3481 https://doi.org/10.1016/j.jbiomech.2014.09.010
- Laksari , K. , Fanton , M. , Wu , L.C. , Nguyen , T.H. , Kurt , M. , Giordano , C. , Kelly , E. , O’Keeffe , E. , Wallace , E. , Doherty , C. , Campbell , M. , Tiernan , S. , Grant , G. , Ruan , J. , Barbat , S. , Camarillo , D.B. 2020 Multi-Directional Dynamic Model for Traumatic Brain Injury Detection J. Neurotrauma 37 982 993 https://doi.org/10.1089/neu.2018.6340
- Lemmon , D.R. , Huston , R.L. 1994 Automobile hood/fender design optimization for improved pedestrian head impact protection. 20th Des Autom. Conf. Proc. 69 569 577
- Li , X. , Zhou , Z. , Kleiven , S. 2020 An anatomically accurate and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain Biomech. Model. Mechanobiol. 1–29 https://doi.org/10.1101/2020.05.20.105635
- Liu , Y. , Domel , A.G. , Yousefsani , S.A. , Kondic , J. , Grant , G. , Zeineh , M. , Camarillo , D.B. 2020 Validation and Comparison of Instrumented Mouthguards for Measuring Head Kinematics and Assessing Brain Deformation in Football Impacts Ann. Biomed. Eng. 48 2580 2598 https://doi.org/10.1007/s10439-020-02629-3
- Lu , Y.C. , Daphalapurkar , N.P. , Knutsen , A.K. , Glaister , J. , Pham , D.L. , Butman , J.A. , Prince , J.L. , Bayly , P. V. , Ramesh , K.T. 2019 A 3D Computational Head Model Under Dynamic Head Rotation and Head Extension Validated Using Live Human Brain Data, Including the Falx and the Tentorium Ann. Biomed. Eng. 47 1923 1940 https://doi.org/10.1007/s10439-019-02226-z
- Madhukar , A. , Ostoja-Starzewski , M. 2019 Finite Element Methods in Human Head Impact Simulations: A Review Ann. Biomed. Eng. 1 23 https://doi.org/10.1007/s10439-019-02205-4
- Mao , H. , Zhang , L. , Jiang , B. , Genthikatti , V. , Jin , X. , Zhu , F. , Makwana , R. , Gill , A. , Jandir , G. , Singh , A. , Yang , K. 2013 Development of a finite element human head model partially validated with thirty five experimental cases J. Biomech. Eng. 135 111002 111015 https://doi.org/10.1115/1.4025101
- Meaney , D.F. , Morrison , B. , Bass , C.R. 2014 The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden J. Biomech. Eng. 136
- Menichetti , A. , Bartsoen , L. , Depreitere , B. , Vander Sloten , J. , Famaey , N. 2021 A Machine Learning Approach to Investigate the Uncertainty of Tissue-Level Injury Metrics for Cerebral Contusion Front. Bioeng. Biotechnol. 9 https://doi.org/10.3389/fbioe.2021.714128
- Miller , L.E. , Urban , J.E. , Stitzel , J.D. 2016 Development and validation of an atlas-based finite element brain model model Biomech Model. 15 1201 1214 https://doi.org/10.1007/s10237-015-0754-1
- Mojahed , A. , Abderezaei , J. , Kurt , M. , Bergman , L.A. , Vakakis , A.F. 2020 A Nonlinear Reduced-Order Model of Corpus Callosum Under Coronal Excitation J. Biomech. Eng. 142 https://doi.org/10.1115/1.4046503
- Newman , J. 1986 A generalized acceleration model for brain injury threshold (GAMBIT) International IRCOBI Conference on the Biomechanics of Impact Zurich, Switzerland 121 131
- Newman , J. , Shewchenko , N. , Welbourn , E. , Welbourne , E. , Welbourn , E. 2000 A proposed new biomechanical head injury assessment function-the maximum power index Stapp Car Crash J. 44 215 247 https://doi.org/10.4271/2000-01-SC16
- Pellman , E.J. , Viano , D.C. , Tucker , A.M. , Casson , I.R. , Waeckerle , J.F. , Maroon , J.C. , Lovell , M.R. , Collins , M.W. , Kelly , D.F. , Valadka , A.B. , Cantu , R.C. , Bailes , J.E. , Levy , M.L. 2003 Concussion in professional football: reconstruction of game impacts and injuries Neurosurgery 53 799 814 https://doi.org/10.1227/01.NEU.0000083559. 68424.3F
- Prechelt , L. 1998 Early Stopping -But When? Neural Networks: Tricks of the Trade -Second Edition (2012) Springer, Berlin, Heidelberg 53 67 https://doi.org/10.1007/3-540-49430-8_3
- Rowson , S. , Duma , S.M. 2013 Brain Injury Prediction: Assessing the Combined Probability of Concussion Using Linear and Rotational Head Acceleration Ann. Biomed. Eng. 41 873 882 https://doi.org/10.1007/s10439-012-0731-0
- Rowson , S. , Duma , S.M. , Beckwith , J.G. , Chu , J.J. , Greenwald , R.M. , Crisco , J.J. , Brolinson , P.G. , Duhaime , A.-C.C. , McAllister , T.W. , Maerlender , A.C. 2012 Rotational head kinematics in football impacts: an injury risk function for concussion Ann. Biomed. Eng. 40 1 13 https://doi.org/10.1007/s10439-011-0392-4
- Sabet , A.A. , Christoforou , E. , Zatlin , B. , Genin , G.M. , Bayly , P. V. 2008 Deformation of the human brain induced by mild angular head acceleration J. Biomech. 41 307 315 https://doi.org/10.1016/j.jbiomech.2007.09.016
- Sanchez , E.J. , Gabler , L.F. , Good , A.B. , Funk , J.R. , Crandall , J.R. , Panzer , M.B. 2018 A reanalysis of football impact reconstructions for head kinematics and finite element modeling Clin. Biomech. 64 82 89 https://doi.org/10.1016/j.clinbiomech.2018.02.019
- Takhounts , E.G. , Ridella , S.A. , Tannous , R.E. , Campbell , J.Q. , Malone , D. , Danelson , K. , Stitzel , J. , Rowson , S. , Duma , S. 2008 Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model Stapp Car Crash J. 52 1 31 https://doi.org/2008-22-0001
- Takhounts , E.G.G. , Craig , M.J.J. , Moorhouse , K. , McFadden , J. , Hasija , V. 2013 Development of Brain Injury Criteria (BrIC) Stapp Car Crash J. 57 243 266 https://doi.org/10.4271/2013-22-0010
- Thomas R. Frieden , Debra Houry , G.B. 2015 Traumatic Brain Injury In the United States: Epidemiology and Rehabilitation Centers Dis. Control Prev. 1–72 https://doi.org/10.3171/2009.10.JNS091500
- Versace , J. 1971 A review of the severity index 15th Stapp Car Crash Conference Coronado, CA, USA, p. SAE paper 710881 https://doi.org/10.4271/710881
- Voulodimos , A. , Doulamis , N. , Doulamis , A. , Protopapadakis , E. 2018 Deep Learning for Computer Vision: A Brief Review Comput. Intell. Neurosci. 2018 1 13 https://doi.org/10.1155/2018/7068349
- Wu , S. , Zhao , W. , Barbat , S. , Ruan , J. , Ji , S. 2021 Towards efficient brain strain estimation for automotive head impacts via transfer learning Proceedings of International Research Conference on the Biomechanics of Impacts. Online Virtual Conference IRC-21-42
- Wu , S. , Zhao , W. , Ghazi , K. , Ji , S. 2019 Convolutional neural network for efficient estimation of regional brain strains Sci. Rep. 9 17326 https://doi.org/10.1038/s41598-019-53551-1
- Wu , S. , Zhao , W. , Rowson , B. , Rowson , S. , Ji , S. 2020 A network-based response feature matrix as a brain injury metric Biomech Model Mechanobiol 19 927 942 https://doi.org/10.1007/s10237-019-01261-y
- Wu , S. , Zhao , W. , Wu , Z. , Ford , J.C. , Flashman , L.A. , McAllister , T.W. , Hu , J. , Ji , S. 2019 Subject-specific Head Injury Models via Scaling Based on Head Morphology: Initial Finding IRCOBI Florence Italy 655 657
- Wu , T. , Alshareef , A. , Giudice , J.S. , Panzer , M.B. 2019 Explicit Modeling of White Matter Axonal Fiber Tracts in a Finite Element Brain Model Ann. Biomed. Eng. 1–15 https://doi.org/10.1007/s10439-019-02239-8
- Yamashita , R. , Nishio , M. , Do , R.K.G. , Togashi , K. 2018 Convolutional neural networks: an overview and application in radiology Insights Imaging 9 611 629 https://doi.org/10.1007/s13244-018-0639-9
- Yanaoka , T. , Dokko , Y. , Takahashi , Y. 2015 Investigation on an Injury Criterion Related to Traumatic Brain Injury Primarily Induced by Head Rotation SAE Tech. Pap. 2015-01–1439 https://doi.org/10.4271/2015-01-1439
- Yang , K.H. , Hu , J. , White , N.A. , King , A.I. , Chou , C.C. , Prasad , P. 2006 Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference Stapp Car Crash J. 50 429 490 https://doi.org/10.4271/2006-22-0017
- Zhan , X. , Liu , Y. , Raymond , S.J. , Alizadeh , H.V. , Domel , A.G. , Gevaert , O. , Zeineh , M.M. , Grant , G.A. , Camarillo , D.B. 2021 Rapid Estimation of Entire Brain Strain Using Deep Learning Models IEEE Trans. Biomed. Eng. 9294 1 11 https://doi.org/10.1109/TBME.2021.3073380
- Zhao , W. , Bartsch , A. , Benzel , E. , Miele , V. , Stemper , B.D. , Ji , S. 2019 Regional Brain Injury Vulnerability in Football from Two Finite Element Models of the Human Head IRCOBI Florence Italy 619 621
- Zhao , W. , Cai , Y. , Li , Z. , Ji , S. 2017 Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter Biomech. Model. Mechanobiol. 16 1709 1727 https://doi.org/10.1007/s10237-017-0915-5
- Zhao , W. , Choate , B. , Ji , S. 2018 Material properties of the brain in injury-relevant conditions – Experiments and computational modeling J. Mech. Behav. Biomed. Mater. 80 222 234 https://doi.org/10.1016/j.jmbbm.2018.02.005
- Zhao , W. , Ford , J.C. , Flashman , L.A. , McAllister , T.W. , Ji , S. 2016 White Matter Injury Susceptibility via Fiber Strain Evaluation Using Whole-Brain Tractography J. Neurotrauma 33 1834 1847 https://doi.org/10.1089/neu.2015.4239
- Zhao , W. , Ji , S. 2021 Cerebral vascular strains in dynamic head impact using an upgraded model with brain material property heterogeneity J. Mech. Behav. Biomed. Mater.
- Zhao , W. , Ji , S. 2020 Incorporation of vasculature in a head injury model lowers local mechanical strains in dynamic impact J. Biomech. 104 109732
- Zhao , W. , Ji , S. 2020 Displacement-and strain-based discrimination of head injury models across a wide range of blunt conditions Ann. Biomed. Eng. 20 1661 1677 https://doi.org/10.1007/s10439-020-02496-y
- Zhao , W. , Ji , S. 2019 White matter anisotropy for impact simulation and response sampling in traumatic brain injury J. Neurotrauma 36 250 263 https://doi.org/10.1089/neu.2018.5634
- Zhao , W. , Ji , S. 2019 Mesh convergence behavior and the effect of element integration of a human head injury model Ann. Biomed. Eng. 47 475 486 https://doi.org/10.1007/s10439-018-02159-z
- Zhao , W. , Ji , S. 2017 Brain strain uncertainty due to shape variation in and simplification of head angular velocity profiles Biomech. Model. Mechanobiol. 16 449 461 https://doi.org/10.1007/s10237-016-0829-7
- Zhao , W. , Ji , S. 2016 Real-time, whole-brain, temporally resolved pressure responses in translational head impact Interface Focus 6 20150091 https://doi.org/10.1098/rsfs.2015.0091
- Zhao , W. , Ji , S. 2015 Parametric investigation of regional brain strain responses via a pre-computed atlas IRCOBI Conf 208 220
- Zhao , W. , Kuo , C. , Wu , L. , Camarillo , D.B. , Ji , S. 2017 Performance evaluation of a pre-computed brain response atlas in dummy head impacts Ann. Biomed. Eng. 45 2437 2450 https://doi.org/DOI:10.1007/s10439-017-1888-3
- Zhao , W. , Ruan , S. , Ji , S. 2015 Brain pressure responses in translational head impact: a dimensional analysis and a further computational study Biomech. Model. Mechanobiol. 14 753 766 https://doi.org/10.1007/s10237-014-0634-0
- Zhou , Z. , Li , X. , Kleiven , S. 2019 Biomechanics of Acute Subdural Hematoma in the Elderly: A Fluid-Structure Interaction Study J. Neurotrauma 36 2099 2108 https://doi.org/10.1089/neu.2018.6143