
On the Definition of Resource Sharing Levels to Understand and Control the Impact of Contention in Multicore Processors
Technical Paper
2021-01-5055
ISSN: 0148-7191, e-ISSN: 2688-3627
Sector:
Event:
Automotive Technical Papers
Language:
English
Abstract
The trend toward the adoption of a multiprocessor system on a chip (MPSoC) in
critical real-time domains, like avionics or automotive, responds to the demand
for increased computing performance to support advanced software
functionalities. The other side of the coin is that MPSoCs challenge software
timing analysis. This is so as co-running applications affect each other’s
timing behavior on account of the interference incurred when accessing shared
hardware resources, with the latter steadily increasing in number and complexity
in every new generation of MPSoCs. For a solid and cost-contained
software-timing validation approach, we contend that a taxonomy has to be
developed to capture the different levels at which processors’ resources can be
shared. Those levels are to be related to the conventional run-time software
abstractions (e.g., task, thread, runnable) and the particular abstraction used
to carry out contention analysis. From the standpoint of contention analysis,
only the resources in those levels shared by the different run-time software
entities need to be mastered and addressed by timing analysis, whereas the
remaining resources can be safely disregarded.
We tailor this approach to two of NVIDIA’s embedded platforms, TX2 and AGX
Xavier, of particular relevance for the automotive domain. For the identified
shared resources, we also characterize the contention that tasks can suffer and
discuss the limitations and early approaches for modeling timing interference in
shared hardware resources.
Authors
- Hamid Tabani - Barcelona Supercomputing Center
- Leonidas Kosmidis - Barcelona Supercomputing Center
- Enrico Mezzetti - Barcelona Supercomputing Center and Maspatechnologies S.L.
- Jaume Abella - Barcelona Supercomputing Center and Maspatechnologies S.L.
- Francisco J. Cazorla - Barcelona Supercomputing Center: Centro Nacional de Supercom
Citation
Tabani, H., Kosmidis, L., Mezzetti, E., Abella, J. et al., "On the Definition of Resource Sharing Levels to Understand and Control the Impact of Contention in Multicore Processors," SAE Technical Paper 2021-01-5055, 2021, https://doi.org/10.4271/2021-01-5055.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- ARM 2015
- Koon , J. 2018 http://interactive.aviationtoday.com/avionics-supercomputers-of-the-future/
- European Aviation Safety Agency (EASA) 2011
- Radack , D. , Tiedeman , H.G. , and Parkinson , P. 2018
- Notebaert , O. On-Board Payload Data Processing Requirements and Technology Trends European Workshop on On-Board Data Processing (OBDP2019) 2009
- Wilhelm , R. and Reineke , J. Embedded Systems: Many Cores Many Problems 7th IEEE International Symposium on Industrial Embedded Systems (SIES’12) Karlsruhe, Germany 176 180 2012
- Certification Authorities Software Team 2016
- International Organization for Standardization 2009
- Fernández , M. , Gioiosa , R. , Quiñones , E. , Fossati , L. et al. Assessing the Suitability of the NGMP Multi-Core Processor in the Space Domain Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2012, part of the Eighth Embedded, Systems Week, ESWeek 2012 Tampere, Finland 2012 Jerraya , A. , Carloni , L.P. , Maraninchi , F.F. , and Regehr , J. 175 184
- Cavicchioli , R. , Capodieci , N. , and Bertogna , M. Memory Interference Characterization between CPU Cores and Integrated GPUs in Mixed-Criticality Platforms 22nd IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2017 Limassol, Cyprus 2017 1 10
- Binkert , N.L. , Beckmann , B.M. , Black , G. , Reinhardt , S.K. et al. The gem5 Simulator SIGARCH Comput. Archit. News 39 2 2011 1 7
- Radio Technical Commission for Aeronautics (RTCA) 2011
- Paolieri , M. , Quinones , E. , Cazorla , F.J. , Bernat , G. et al. Hardware Support for WCET Analysis of Hard Real-Time Multicore Systems 36th International Symposium on Computer Architecture (ISCA 2009) Austin, TX 2009 Keckler , S.W. and Barroso , L.A. 57 68
- Kim , S. , Chandra , D. , and Solihin , Y. Fair Cache Sharing and Partitioning in a Chip Multiprocessor Architecture 13th International Conference on Parallel Architectures and Compilation Techniques (PACT 2004) Antibes Juan-les-Pins, France 2004 111 122
- NXP 2016
- NXP 2017
- Paolieri , M. , Mische , J. , Metzlaff , S. , Gerdes , M. et al. A Hard Real-Time Capable Multi-Core SMT Processor ACM Trans. Embed. Comput. Syst. 12 3 2013 79:1 79:26
- Yun , H. , Yao , G. , Pellizzoni , R. , Caccamo , M. et al. Memguard: Memory Bandwidth Reservation System for Efficient Performance Isolation in Multi-core Platforms 19th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2013 Philadelphia, PA 2013 55 64
- Ali , W. and Yun , H. Protecting Real-Time GPU Kernels on Integrated CPU-GPU SOC Platforms 30th Euromicro Conference on Real-Time Systems, ECRTS 2018 Barcelona, Spain 2018 Altmeyer , S. 106 19:1 19:22
- Nowotsch , J. , Paulitsch , M. , Buhler , D. , Theiling , H. et al. Multi-Core Interference-Sensitive WCET Analysis Leveraging Runtime Resource Capacity Enforcement 26th Euromicro Conference on Real-Time Systems, ECRTS 2014 Madrid, Spain 2014 109 118
- Biondi , A. and Natale , M.D. Achieving Predictable Multicore Execution of Automotive Applications Using the LET Paradigm IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2018 Porto, Portugal 2018 Pellizzoni , R. 240 250
- Li , L. and Mayer , A. Trace-Based Analysis Methodology of Program Flash Contention in Embedded Multicore Systems 2016 Design, Automation & Test in Europe Conference & Exhibition, DATE 2016 Dresden, Germany 2016 Fanucci , L. and Teich , J. 199 204 2016
- RENESAS 2016 https://www.renesas.com/kr/en/solutions/automotive/soc/r-car-h3.html
- Betts , A. and Donaldson , A.F. Estimating the WCET of GPU-Accelerated Applications Using Hybrid Analysis 25th Euromicro Conference on Real-Time Systems, ECRTS 2013 Paris, France 2013 193 202
- Berezovskyi , K. , Bletsas , K. , and Andersson , B. Makespan Computation for GPU thReads Running on a Single Streaming Multiprocessor 24th Euromicro Conference on Real-Time Systems, ECRTS 2012 Pisa, Italy 2012 Davis , R. 277 286
- Berezovskyi , K. , Guet , F. , Santinelli , L. , Bletsas , K. et al. Measurement-Based Probabilistic Timing Analysis for Graphics Processor Units Architecture of Computing Systems—ARCS 2016—29th International Conference Nuremberg, Germany 2016 Hannig , F. , Cardoso , J.M.P. , Pionteck , T. , Fey , D. et al. 9637 223 236
- Yang , M. , Otterness , N. , Amert , T. , Bakita , J. et al. Avoiding Pitfalls When Using NVIDIA GPUs for Real-Time Tasks in Autonomous Systems 30th Euromicro Conference on Real-Time Systems, ECRTS 2018 Barcelona, Spain 2018 Altmeyer S. 106 20:1 20:21
- Amert , T. , Otterness , N. , Yang , M. , Anderson , J.H. et al. GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed 2017 IEEE Real-Time Systems Symposium, RTSS 2017 Paris, France 2017 104 115