This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Validation Studies of a Detailed Soot Chemistry for Gasoline and Diesel Engines
Technical Paper
2021-01-0618
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Accurately predicting the evolution of soot mass and soot particle numbers under engine conditions is critical to advanced engine design. A detailed soot-chemistry model that can capture soot under gasoline and diesel conditions without tuning is necessary for such predictions. Building confidence in the predictive usage of the chemistry in engine simulations requires validating the soot kinetics over a wide range of operating conditions and fuels, using data from different experimental techniques, and using sources from laboratory flames to engines. This validation study focuses on a soot-chemistry model that considers multiple nucleation, growth, and oxidation reaction pathways. It involves 14 gas-phase precursors and considers the effect of different soot-particle surface sites. The validation starts with well controlled one-dimensional flames for fuels relevant to automotive engines, including n-heptane, n-dodecane, methyl cyclohexane (MCH) and toluene in addition to gasoline and diesel fuels. The impact of temperature, residence time, and fuels on the evolution of soot particle size distribution is validated using Ansys Chemkin-Pro reactor models. We then consider pressure effects under shock-tube conditions. Next, we consider soot formed in gasoline and diesel engines over a range of load, speed, and EGR conditions using 3-D CFD simulations. The Chemkin-Pro cases use method of moments or sectional method as appropriate, and the CFD cases model soot with the method of moments. Finally, we considered validation with high-pressure lifted flames in a constant volume reactor. The model is able to capture the important trends across this wide range of combustion conditions, providing confidence in its usage for engine simulations.
Authors
Topic
Citation
Puduppakkam, K., Naik, C., and Meeks, E., "Validation Studies of a Detailed Soot Chemistry for Gasoline and Diesel Engines," SAE Technical Paper 2021-01-0618, 2021, https://doi.org/10.4271/2021-01-0618.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 |
Also In
References
- 2021
- Naik , C.V. , Puduppakkam , K. , Wang , C. , Kottalam , J. et al. Applying Detailed Kinetics to Realistic Engine Simulation: The Surrogate Blend Optimizer and Mechanism Reduction Strategies SAE International Journal of Engines 3 1 241 259 2010
- Farrell , J.T. , Cernansky , N.P. , Dryer , F.L. , Hergart , C.A. et al. Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels SAE Technical Paper 2007-01-0201 2007 https://doi.org/10.4271/2007-01-0201
- Pitz , W.J. , Cernansky , N.P. , Dryer , F.L. , Egolfopoulos , F. et al. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels SAE Paper 2007-01-0175 2007 https://doi.org/10.4271/2007-01-0175
- Puduppakkam , K.V. , Naik , C.V. , and Meeks , E. Modeling Fuel Effects in a Diesel Engine Using Multi-Component Fuel Surrogates in CFD. ICEF2018-9747 Proceedings of the ASME 2018 Internal Combustion Fall Technical Conference 2018
- Puduppakkam , K. , Naik , C. , Wang , C. , and Meeks , E. Validation Studies of a Detailed Kinetics Mechanism for Diesel and Gasoline Surrogate Fuels SAE Technical Paper 2010-01-0545 2010 https://doi.org/10.4271/2010-01-0545
- Naik , C.V. , Puduppakkam , K.V. , and Meeks , E. An Improved Core Reaction Mechanism for Un-saturated C0-C4 Fuels and Their Blends Proceedings of ASME Turbo Expo, GT2012-68722 2012
- Puduppakkam , K. , Liang , L. , Naik , C.V. , Meeks , E. et al. Use of Detailed Kinetics and Advanced Chemistry-Solution Techniques in CFD to Investigate Dual-Fuel Engine Concepts SAE Technical Paper 2011-01-0895 2011 https://doi.org/10.4271/2011-01-0895
- 2020
- Hidaka , Y. , Henmi , Y. , Ohonishi , T. , Okuno , T. et al. Shock-Tube and Modeling Study of Diacetylene Pyrolysis and Oxidation Combustion and Flame 130 62 82 2002
- Malewicki , T. and Brezinsky , K. Experimental and Modeling Study on the Pyrolysis and Oxidation of n-Decane and n-Dodecane Proceedings of the Combustion Institute 34 361 368 2013
- Malewicki , T. , Comandini , A. , and Brezinsky , K. Experimental and Modeling Study on the Pyrolysis and Oxidation of Iso-Octane Proceedings of the Combustion Institute 34 353 360 2013
- Poddar , N.B. , Thomas , S. , and Wornat , M.J. Polycyclic Aromatic Hydrocarbons from the Co-Pyrolysis of 1,3-Butadiene and Propyne Proceedings of the Combustion Institute 34 1775 1783 2013
- Gudiyella , S. and Brezinsky , K. High Pressure Study of n-Propylbenzene Pyrolysis Proceedings of the Combustion Institute 159 1767 1774 2013
- Weng , J.-J. , Liu , Y.-X. , Wang , B.-Y. , Xing , L.-L. et al. Experimental and Kinetic Investigation of 1,2,4-Trimethylbenzene Oxidation at Low Temperature Proceedings of the Combustion Institute 36 909 917 2017
- Mati , K. , Ristori , A. , Pengloan , G. , and Dagaut , P. Oxidation of 1-Methylnaphthalene at 1-13 atm: Experimental Study in a JSR and Detailed Chemical Kinetic Modeling Combustion Science and Technology 179 1261 1285 2007
- 2020
- Lu , T. and Law , C.K. A Directed Relation Graph Method for Mechanism Reduction Proceedings of the Combustion Institute 30 1333 1341 2005
- Pepiot-Desjardins , P. and Pitsch , H. An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms, Combustion and Flame 154 67 81 2008
- Sun , W. , Chen , X. , Gou , X. , and Ju , Y. A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms Combustion and Flame 157 1298 1307 2010
- Matzing , H. and Wagner , H.G. Measurements about the Influence of Pressure on Carbon Formation in Premixed Laminar C2H4-Air Flame Symposium (International) on Combustion 21 1047 1055 1986
- Bohm , H. , Hesse , D. , Jander , H. , Luers , B. et al. The Influence of Pressure and Temperature on Soot Formation in Premixed Flames Symposium (International) on Combustion 22 403 411 1988
- Abid , A.D. , Camacho , J. , Sheen , D.A. , and Wang , H. Quantitative Measurement of Soot Particle Size Distribution in Premixed Flames - The Burner-Stabilized Stagnation Flame Approach Combustion and Flame 156 1862 1870 2009
- Camacho , J. , Liu , C. , Gu , C. , Lin , H. et al. Mobility Size and Mass of Nascent Soot Particles in a Benchmark Premixed Ethylene Flame Combustion and Flame 162 3810 3822 2015
- Puduppakkam , K.V. , Modak , A.U. , Naik , C.V. , Camacho , J. et al. A Soot Chemistry Model that Captures Fuel Effects Proceedings of ASME TurboExpo, GT2014-27123 2014
- 2005 http://www.modelfuelsconsortium.com
- Abid , A.D. , Camacho , J. , Sheen , D.A. , and Wang , H. Evolution of Soot Particle Size Distribution Function in Burner-Stabilized Stagnation n-Dodecane−Oxygen−Argon Flames Energy and Fuels 23 9 4286 4294 2009
- Puduppakkam , K. , Naik , C. , Meeks , E. , Krenn , C. et al. Predictive Combustion and Emissions Simulations for a High Performance Diesel Engine Using a Detailed Fuel Combustion Model SAE Technical Paper 2014-01-2570 2014 https://doi.org/10.4271/2014-01-2570
- Cruz , A.P.D. , Dumas , J.-P. , and Bruneaux , G. Two-Dimensional In-Cylinder Soot Volume Fractions in Diesel Low Temperature Combustion Mode SAE International Journal of Engines 4 1 2023 2047 2011
- Bunting , B.G. , Bunce , M. , Puduppakkam , K. , and Naik , C. Kinetic Modeling of Fuel Effects over a Wide Range of Chemistry, Properties, and Sources Subic , A. et al. Sustainable Automotive Technologies 2012 Berlin, Heidelberg Springer 2012 127 133
- Kook , S. and Pickett , L.M. Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions SAE International Journal of Fuels and Lubricants 5 2 647 664 2012
- Pickett , L.M. and Siebers , D.L. Soot Formation in Diesel Fuel Jets Near the Lift-Off Length International Journal of Engine Research 7 2 103 130
- Naik , C.V. , Liang , L. , Puduppakkam , K.V. , and Meeks , E. Simulation and Analysis of In-Cylinder Soot Formation in a Gasoline Direct-Injection Engine Using a Detailed Reaction Mechanism SAE Technical Paper 2014-01-1135 2014 https://doi.org/10.4271/2014-01-1135
- Raj , A. , Celnik , M. , Shirley , R. , Sander , M. et al. A Statistical Approach to Develop a Detailed Soot Growth Model Using PAH Characteristics Combustion and Flame 156 896 913 2009
- Wang , H. and Frenklach , M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames Combustion and Flame 110 173 221 1997
- Appel , J. , Bockhorn , H. , and Frenklach , M. Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons Combustion and Flame 121 122 136 2000
- Chung , S.-H. Computational Modeling of Soot Nucleation University of Michigan 2011
- Richter , H. and Howard , J.B. Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot—A Review of Chemical Reaction Pathways Progress in Energy and Combustion Science 26 4-6 565 608 2000
- Chung , S.-H. and Violi , A. Peri-Condensed Aromatics with Aliphatic Chains as Key Intermediates for the Nucleation of Aromatic Hydrocarbons Proceedings of the Combustion Institute 33 693 700 2011
- Wang , H. Formation of Nascent Soot and Other Condensed-Phase Materials in Flames Proceedings of the Combustion Institute 33 1 41 67 2011
- Eaves , N.A. , Dworkin , S.B. , and Thomson , M.J. Assessing Relative Contributions of PAHs to Soot Mass by Reversible Heterogeneous Nucleation and Condensation Proceedings of the Combustion Institute 36 935 945 2017
- Camacho , J. , Tao , Y. , and Wang , H. Kinetics of Nascent Soot Oxidation by Molecular Oxygen in a Flow Reactor Proceedings of the Combustion Institute 35 1887 1894 2015
- Neoh , K.G. , Howard , J.B. , and Sarofim , A.F. Soot Oxidation in Flames Siegla , D.C. , Smith , G.W. Particulate Carbon Boston, MA Springer 1981
- Guo , H. , Anderson , P.M. , and Sunderland , P.B. Optimized Rate Expressions for Soot Oxidation by OH and O2 Fuel 172 248 252 2016
- Shrivastava , M. , Nguyen , A. , Zheng , Z. , Wu , H.-W. et al. Kinetics of Soot Oxidation by NO2 Environmental Science and Technology 44 12 4796 4801 2010
- Lindstedt , R.P. and Waldheim , B.B.O. Modeling of Soot Particle Size Distributions in Premixed Stagnation Flow Flames Proceedings of the Combustion Institute 34 1861 1868 2013
- Harris , S.J. and Kennedy , I.M. The Coagulation of Soot Particles with van der Waals Forces Combustion Science and Technology 59 443 454 1988
- Maricq , M.M. and Xu , N. The Effective Density and Fractal Dimension of Soot Particles from Premixed Flames and Motor Vehicle Exhaust Journal of Aerosol Science 35 10 1251 1274 2004
- Saggese , C. , Cuoci , A. , Frassodalti , A. , Ferrario , S. et al. Probe Effects of Soot Sampling from a Burner Stabilized Stagnation Flame Combustion and Flame 167 184 197 2016
- https://www.adelaide.edu.au/cet/isfworkshop/
- Hong , Z. , Davidson , D.F. , Vasu , S.S. , and Hanson , R.K. The Effect of Oxygenates on Soot Formation in Rich Heptane Mixtures: A Shock Tube Study Fuel 88 1901 1906 2009
- Mathieu , O. , Frache , G. , Djebaı¨Li-Chaumeix , N. , Paillard , C.-E. et al. Characterization of Adsorbed Species on Soot Formed Behind Reflected Shock Waves Proceedings of the Combustion Institute 31 511 519 2007
- Naik , C.V. , Puduppakkam , K. , and Meeks , E. Simulation and Analysis of In-Cylinder Soot Formation in a Low Temperature Combustion Diesel Engine Using a Detailed Reaction Mechanism SAE International Journal of Engines 6 2 1190 1201 2013
- 2020
- Beale , J.C. and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model Atomization and Sprays 9 623 650 1999
- Wang , Y. , Ge , H.-W. , and Reitz , R.D. Validation of Mesh- and Timestep-Independent Spray Models for Multi-Dimensional Engine CFD Simulation SAE Technical Paper 2010-01-0626 2010 https://doi.org/10.4271/2010-01-0626
- Abani , N. , Kokjohn , S. , Park , S.W. , Bergin , M. et al. An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations SAE Technical Paper 2008-01-0970 2008 https://doi.org/10.4271/2008-01-0970
- Schmidt , D.P. , Nouar , I. , Senecal , P.K. , Rutland , C.J. et al. Pressure-Swirl Atomization in the Near Field SAE Technical Paper 1999-01-0496 1999 https://doi.org/10.4271/1999-01-0496
- Hou , S. and Schmidt , D.P. Adaptive Collision Meshing and Satellite Droplet Formation in Spray Simulations International Journal of Multiphase Flow 32 935 956 2006
- Ra , Y. and Reitz , R.D. A Vaporization Model for Discrete Multi-Component Fuel Sprays International Journal of Multiphase Flow 35 101 117 2009
- Puduppakkam , K.V. , Modak , A.U. , Wang , C. , Hodgson , D. et al. Generating Laminar Flame Speed Libraries for Autoignition Conditions Proceedings of ASME Turbo Expo, GT2020-15274 2020
- Puduppakkam , K.V. , Wang , C. , Hodgson , D. , Naik , C. et al. Accurate and Dynamic Accounting of Fuel Composition in Flame Propagation During Engine Simulations SAE Technical Paper 2016-01-0597 2016 https://doi.org/10.4271/2016-01-0597
- Gallant , T. , Franz , J.A. , Alnajjar , M.S. , Storey , J.M.E. et al. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties SAE Technical Paper 2009-01-2769 2009 https://doi.org/10.4271/2009-01-2769
- Alnajjar , M. , Cannella , B. , Dettman , H. , Fairbridge , C. et al. 2010
- https://ecn.sandia.gov/