This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Effect of Liquid Break-Up Model Selection on Simulated Diesel Spray and Combustion Characteristics
Technical Paper
2021-01-0546
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Accurate modelling for spray vapour fields is critical to enable adequate predictions of spray ignition and combustion characteristics of non-premixed reacting diesel sprays. Spray vapour characteristics are in turn controlled by liquid atomization and the KH-RT liquid jet break-up model is regularly used to predict this: with the KH model used for predicting primary break-up given its definition as a surface wave growth model, and the RT model used for predicting secondary break-up due to it being a drag based, stripping model. This paper investigates how the alteration of the switching position of the KH and RT sub-models within the KH-RT model impacts the resulting vapour field and ignition characteristics. The combustion prediction is handled by the implementation of a 54 species, 269 reaction skeletal mechanism utilising a Well Stirred Reactor model within the Star-CD CFD code. Following on from the derivation and implementation of an Ohnesorge based switch between the KH and RT sub-models, this model is now tested in igniting cases for an n-dodecane fuelled single holed injection representing the ECN “Spray A” condition, and is compared to the baseline Reitz-Diwakar model. Differences in flame behaviour, particularly within the temperature distribution, are seen and directly traced from the effect of liquid break-up position and model selection, through atomised droplet size distribution and mixture fraction distribution. Different criteria for judging the ignition delays and lift-off-lengths are compared, with all methods predicting very similar results for both models. The KH and RT sub-models are also tested against each other, with heavy instabilities seen when the RT model is solely applied to the spray. This correlates with the instabilities shown in the vapour fields, suggesting the enabling of the RT model near-nozzle is to be avoided.
Authors
Topic
Citation
Nicholson, L., Davy, M., Camm, J., and Ayyapureddi, S., "Effect of Liquid Break-Up Model Selection on Simulated Diesel Spray and Combustion Characteristics," SAE Technical Paper 2021-01-0546, 2021, https://doi.org/10.4271/2021-01-0546.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 | ||
Unnamed Dataset 8 |
Also In
References
- Siebers , D.L. , and Higgins , B. Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions SAE Technical Paper 2001-01-0530 2001 https://doi.org/10.4271/2001-01-0530
- Senecal , P.K. , Pomraning , E. , Richards , K.J. , Som , S. Grid-Convergent Spray Models for Internal Combustion Engine Computational Fluid Dynamics Simulations J Energy Resour Technol 2013 136 012204 http://energyresources.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4024861
- Koss , H. , Wiartalla , A. , and Backer , H. Spray Propagation, Mixture Formation, Auto-Ignition and Soot Formation of Multi-Component Fuels in a Pressure Chamber IDEA-EFFECT 2nd Period Rep. 515 542 1993
- Pickett , L.M. , Genzale , C.L. , Bruneaux , G. , Malbec , L. et al. Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities SAE Technical Paper 2010-01-21 2010 https://doi.org/10.4271/2010-01-2106
- Leach , F. , Ismail , R. , and Davy , M. Engine-out Emissions from a Modern High Speed Diesel Engine - The Importance of Nozzle Tip Protrusion Appl Energy 226 340 352 2018 https://doi.org/10.1016/j.apenergy.2018.05.117
- Senecal , P.K. , Pomraning , E. , Richards , K.J. , Briggs , T.E. et al. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry SAE Technical Paper 2003-01-1043 2003 https://doi.org/10.4271/2003-01-1043
- Lucchini , A.T. , Errico , G.D. , Ettorre , D. , Ferrari , G. et al. Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume SAE Int J Fuels Lubr. 2 966 975 2009 https://doi.org/10.4271/2009-01-1971
- Leach , F. , Ismail , R. , Davy , M. , Weall , A. , and Cooper , B. The Effect of a Stepped Lip Piston Design on Performance and Emissions from a High-speed Diesel Engine Appl Energy 215 679 689 2018 https://doi.org/10.1016/j.apenergy.2018.02.076
- Fang , X. , Ismail , R. , Davy , M.H. , and Camm , J. Numerical Studies of Combustion Recession on ECN Diesel Spray A ASME 2018 Intern Combust Engine Div Fall Tech Conf. San Diego 2018 1 13
- Bolla , M. , Farrace , D. , Wright , Y.M. , Boulouchos , K. , and Mastorakos , E. Influence of Turbulence-chemistry Interaction for N-heptane Spray Combustion under Diesel Engine Conditions with Emphasis on Soot Formation and Oxidation Combust Theory Model 18 330 360 2014 http://dx.doi.org/10.1080/13647830.2014.898795
- Blomberg , C.K. , Zeugin , L. , Pandurangi , S.S. , Bolla , M. et al. Modeling Split Injections of ECN “Spray A” Using a Conditional Moment Closure Combustion Model with RANS and LES SAE Int J Engines. 9 2107 2119 2016 https://doi.org/10.4271/2016-01-2237
- CD-adapco 2017
- Dukowicz , J.K. A Particle-Fluid Numerical Model for Liquid Sprays J Comput Phys. 35 229 253 1980
- Launder , B.E. and Spalding , D.B. The Numerical Computation of Turbulent Flows Numer Predict Flow, Heat Transf Turbul Combust 1983 96 116 http://linkinghub.elsevier.com/retrieve/pii/B9780080309378500167
- Nicholson , L. , Fang , X. , Camm , J. , Davy , M. , and Richardson , D. Comparison of Transient Diesel Spray Break-Up between Two Computational Fluid Dynamics Codes SAE Technical Paper 2018-01-0307 2018 https://doi.org/10.4271/2018-01-0307
- Gosman , A.D. and Ioannides , E. Aspects of Computer Simulation of Liquid-Fuelled Combustors AIAA 19th Aerosp Sci Meet AIAA-81-0323 St Louis, USA 1981
- El Wakil , M.M. , Uyehara , O.A. , and Myers , P.S. 1954
- Ranz , W.E. , and Marshall , W.R. Evaporation from Drops - Part 1 Chem. Eng. Prog. 141 148 1952
- Reitz , R.D. , and Diwakar , R. Effect of Drop Breakup on Fuel Sprays SAE Tech Paper 860469 1986 https://doi.org/10.4271/860469
- Beale , J.C. , and Reitz , R.D. Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model At Sprays 9 1999
- Xin , J. , Ricart , L. , and Reitz , R.D. Computer Modeling of Diesel Spray Atomization and Combustion Combust Sci Technol. 137 171 194 1998
- Yao , T. , Pei , Y. , Zhong , B. , Som , S. , and Lu , T. A Hybrid Mechanism for n-Dodecane Combustion with Optimized Low-Temperature Chemistry Fuel 191 2017
- Wang , H. , Ra , Y. , Jia , M. , Reitz , R.D. Development of a Reduced N-Dodecane-PAH Mechanism and Its Application for N-Dodecane Soot Predictions Fuel 136 25 36 2014 http://dx.doi.org/10.1016/j.fuel.2014.07.028
- Borghesi , G. , Krisman , A. , Lu , T. , and Chen , J.H. Direct Numerical Simulation of a Temporally Evolving Air/n-Dodecane Jet at Low-Temperature Diesel-Relevant Conditions Combust Flame 195 183 202 2018
- Ma , P.C. , Wu , H. , Jaravel , T. , Bravo , L. , and Ihme , M. Large-eddy Simulations of Transcritical Injection and Auto-ignition using Diffuse-interface Method and Finite-rate Chemistry Proc Combust Inst 37 3303 10 2019 https://doi.org/10.1016/j.proci.2018.05.063
- Kim , N. , Jung , K. , and Kim , Y. Multi-Environment PDF Modeling for N-Dodecane Spray Combustion Processes Using Tabulated Chemistry Combust Flame 192 205 20 2018 https://doi.org/10.1016/j.combustflame.2018.02.004
- Chishty , M.A. , Bolla , M. , Hawkes , E.R. , Pei , Y. , Kook , S. Soot Formation Modelling for n -dodecane Sprays Using the Transported PDF Model Combust Flame 192 101 19 2018 https://doi.org/10.1016/j.combustflame.2018.01.028
- Liang , L. , Stevens , J.G. , and Farrell , J.T. A Dynamic Multi-zone Partitioning Scheme for Solving Detailed Chemical Kinetics in Reactive Flow Computations Combust Sci Technol. 181 1345 1371 2009
- Westbrook , C.K. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems Proc Combust Inst. 28 1563 1577 2000
- Pickett , L.M. , Genzale , C.L. , Bruneaux , G. , Malbec , L. et al. Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities SAE Int J Engines. 3 156 181 2010 https://doi.org/10.4271/2010-01-2106
- Pickett , L.M. 2017 http://www.ecn.sandia.gov
- Lillo , P.M. , Pickett , L.M. , Persson , H. , Andersson , O. , and Kook , S. Diesel Spray Ignition Detection and Spatial/Temporal Correction SAE Int J Engines 5 1330 1346 2012 https://doi.org/10.4271/2012-01-1239
- Desantes , J.M. , Garcia-Oliver , J.M. , Novella , R. , and Perez-Sanchez , E.J. Application of an Unsteady Flamelet Model in a RANS Framework for Spray A Simulation Appl Therm Eng 117 50 64 2017 http://dx.doi.org/10.1016/j.applthermaleng.2017.01.101
- Fang , X. , Ismail , R. , and Davy , M. A Study on Kinetic Mechanisms of Diesel Fuel Surrogate n-Dodecane for the Simulation of Combustion Recession SAE Technical Paper 2019-01-0202 2019 https://doi.org/10.4271/2019-01-0202
- Naber , J. , and Siebers , D.L. Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays SAE Technical Paper 960034 1996 https://doi.org/10.4271/960034
- Bhattacharjee , S. and Haworth , D.C. Simulations of Transient N-Heptane and N-Dodecane Spray Flames under Engine-Relevant Conditions Using a Transported PDF Method Combust Flame 160 2083 102 2013 http://dx.doi.org/10.1016/j.combustflame.2013.05.003
- Kim , S. , Jarrahbashi , D. , and Genzale , C. The Role of Turbulent-Chemistry Interaction in Simulating End-of-Injection Combustion Transients in Diesel Sprays SAE Technical Paper 2017-01-0838 2017 https://doi.org/10.4271/2017-01-0838
- Jarrahbashi , D. , Kim , S. , Knox , B.W. , and Genzale , C.L. Computational Analysis of End-of-Injection Transients and Combustion Recession Int J Engine Res. 8 2017
- Reitz , R.D. Modeling Atomization Processes in High-Pressure Vaporizing Sprays At Sprays. 3 309 337 1987
- Joseph , D.D. , Belanger , J. , and Beavers , G.S. Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream Int J Multiph Flow. 25 1263 1303 1999