This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas
Technical Paper
2021-01-0525
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
The spatial and temporal locations of autoignition depend on fuel chemistry and the temperature, pressure, and mixing trajectories in the fuel jets. Dual-fuel systems can provide insight into fuel-chemistry aspects through variation of the proportions of fuels with different reactivities, and engine operating condition variations can provide information on physical effects. In this context, the spatial and temporal progression of two-stage autoignition of a diesel-fuel surrogate, n-heptane, in a lean-premixed charge of synthetic natural gas (NG) and air is imaged in an optically accessible heavy-duty diesel engine. The lean-premixed charge of NG is prepared by fumigation upstream of the engine intake manifold. Optical diagnostics include: infrared (IR) imaging for quantifying both the in-cylinder NG concentration and the pilot-jet penetration rate and spreading angle, high-speed cool-flame chemiluminescence imaging as an indicator of low-temperature heat release (LTHR), and high-speed OH* chemiluminescence imaging as an indicator high-temperature heat release (HTHR). To aid interpretation of the experimental observations, zero-dimensional chemical kinetics simulations provide further understanding of the underlying interplay between the physical and chemical processes of mixing (pilot fuel-jet entrainment) and autoignition (two-stage ignition chemistry). Increasing the premixed NG concentration prolongs the ignition delay of the pilot fuel and increases the combustion duration. Due to the relatively short pilot-fuel injections utilized, the transient increase in entrainment near the end of injection (entrainment wave) plays an important role in mixing. To achieve desired combustion characteristics, i.e., ignition and combustion timing (e.g., for combustion phasing) and location (e.g., for reducing wall heat-transfer or tailoring charge stratification), injection parameters can be suitably selected to yield the necessary mixing trajectories that potentially help offset changes in fuel ignition chemistry, which could be a valuable tool for combustion design.
Authors
Topic
Citation
Rajasegar, R., Niki, Y., Garcia-Oliver, J., Li, Z. et al., "Spatio-Temporal Progression of Two-Stage Autoignition for Diesel Sprays in a Low-Reactivity Ambient: n-Heptane Pilot-Ignited Premixed Natural Gas," SAE Technical Paper 2021-01-0525, 2021, https://doi.org/10.4271/2021-01-0525.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Liu , J. et al. Effects of Pilot Fuel Quantity on the Emissions Characteristics of a CNG/Diesel Dual Fuel Engine with Optimized Pilot Injection Timing Applied Energy 110 201 206 2013
- Rochussen , J. , Yeo , J. , and Kirchen , P. Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion SAE Technical Paper 2016-01-0792 2016 https://doi.org/10.4271/2016-01-0792
- Schlatter , S. et al. Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine SAE Technical Paper 2012-01-0825 2012 https://doi.org/10.4271/2012-01-0825
- Schlatter , S. et al. N-Heptane Micro Pilot Assisted Methane Combustion in a Rapid Compression Expansion Machine Fuel 179 339 352 2016
- Dronniou , N. et al. Optical Investigation of Dual-Fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions SAE Technical Paper 2014-01-1313 2014 https://doi.org/10.4271/2014-01-1313
- Nithyanandan , K. et al. An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine SAE Technical Paper 2017-01-0755 2017 https://doi.org/10.4271/2017-01-0755
- Salaun , E. et al. Optical Investigation of Ignition Timing and Equivalence Ratio in Dual-Fuel CNG/Diesel Combustion SAE Technical Paper 2016-01-0772 2016 https://doi.org/10.4271/2016-01-0772
- Borghesi , G. , Mastorakos , E. , and Cant , R.S. Complex Chemistry DNS of n-Heptane Spray Autoignition at High Pressure and Intermediate Temperature Conditions Combustion and Flame 160 7 1254 1275 2013
- Dahms , R.N. et al. Understanding the Ignition Mechanism of High-Pressure Spray Flames Proceedings of the Combustion Institute 36 2 2615 2623 2017
- Krisman , A. , Hawkes , E.R. , and Chen , J.H. Two-Stage Autoignition and Edge Flames in a High Pressure Turbulent Jet Journal of Fluid Mechanics 824 5 41 2017
- Skeen , S.A. , Manin , J. , and Pickett , L.M. Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames Proceedings of the Combustion Institute 35 3 3167 3174 2015
- Karim , G.A. Combustion in Gas Fueled Compression: Ignition Engines of the Dual Fuel Type Journal of Engineering for Gas Turbines and Power 125 3 827 836 2003
- Rajasegar , R. et al. Influence of Pilot-Fuel Mixing on the Spatio-Temporal Progression of Two Stage Autoignition of Diesel-Sprays in Low-Reactivity Ambient Fuel-Air Mixture Proceedings of the Combustion Institute 2020
- Niki , Y. et al. Verification of Diesel Spray Ignition Phenomenon in Dual-Fuel Premixed Natural Gas Engine International Journal of Engine Research 2020
- Srna , A. et al. Effect of Methane on Pilot-Fuel Auto-Ignition in Dual-Fuel Engines Proceedings of the Combustion Institute 37 4 4741 4749 2019
- Wong , Y.K. , and Karim , G.A. A Kinetic Examination of the Effects of Recycled Exhaust Gases on the Autoignition of Homogeneous N-Heptane-Air Mixtures in Engines SAE Technical Paper 2000-01-2037 2000 https://doi.org/10.4271/2000-01-2037
- Liu , Z. , and Karim , G.A. An Examination of the Ignition Delay Period in Gas-Fueled Diesel Engines Journal of Engineering for Gas Turbines and Power 120 1 225 231 1998
- Badr , O. , Karim , G.A. , and Liu , B. An Examination of the Flame Spread Limits in a Dual Fuel Engine Applied Thermal Engineering 19 10 1071 1080 1999
- Genzale , C.L. , Reitz , R.D. , and Musculus , M.P.B. Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion SAE Technical Paper 2009-01-2699 2009 https://doi.org/10.4271/2009-01-2699
- Dec , J.E. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging* SAE Technical Paper 970873 1997 https://doi.og/10.4271/970873
- Espey , C. , and Dec , J.E. Diesel Engine Combustion Studies in a Newly Designed Optical-Access Engine Using High-Speed Visualization and 2-D Laser Imaging SAE Technical Paper 930971 1993 https://doi.org/10.4271/930971
- Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill 1988
- Kokjohn , S.L. , Musculus , M.P.B. , and Reitz , R.D. Evaluating Temperature and Fuel Stratification for Heat-Release Rate Control in a Reactivity-Controlled Compression-Ignition Engine Using Optical Diagnostics and Chemical Kinetics Modeling Combustion and Flame 162 6 2729 2742 2015
- Pickett , L.M. , Siebers , D.L. , and Idicheria , C.A. Relationship Between Ignition Processes and the Lift-Off Length of Diesel Fuel Jets SAE Technical Paper 2005-01-3843 2005 https://doi.org/10.4271/2005-01-3843
- Siebers , D.L. , and Higgins , B. Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions SAE Technical Paper 2001-01-0530 2001 https://doi.org/10.4271/2001-01-0530
- Anders , H. et al. A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging SAE Technical Paper 1999-01-3680 1999 https://doi.org/10.4271/2001-01-3680
- Dec , J.E. , Hwang , W. , and Sjöberg , M. An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging SAE Technical Paper 2006-01-1518 2006 https://doi.org/10.4271/2006-01-1518
- Mehl , M. et al. Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine SAE Technical Paper 2009-01-1806 2009 https://doi.org/10.4271/2009-01-1806
- Mehl , M. et al. Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions Proceedings of the Combustion Institute 33 1 193 200 2011
- Rothman , L.S. et al. The HITRAN Database: 1986 Edition Applied Optics 26 19 4058 4097 1987
- Goldenstein , C.S. et al. SpectraPlot.com: Integrated Spectroscopic Modeling of Atomic and Molecular Gases Journal of Quantitative Spectroscopy and Radiative Transfer 200 249 257 2017
- Dec , J.E. , and Hwang , W. Characterizing the Development of Thermal Stratification in an HCCI Engine Using Planar-Imaging Thermometry SAE Technical Paper 2009-01-0650 2009 https://doi.org/10.4271/2009-01-0650
- Stanton , D.W. Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations SAE Technical Paper 2013-01-2421 2013 https://doi.org/10.4271/2013-01-2421
- Musculus , M.P.B. , and Kattke , K. Entrainment Waves in Diesel Jets SAE International Journal of Engines 2 1 1170 1193 2009
- Musculus , M.P.B. et al. End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines SAE Technical Paper 2007-01-0907 2007 https://doi.org/10.4271/2007-01-0907
- Huestis , E. , Erickson , P.A. , and Musculus , M.P.B. In-Cylinder and Exhaust Soot in Low-Temperature Combustion Using a Wide-Range of EGR in a Heavy-Duty Diesel Engine SAE Technical Paper 2007-01-4017 2007 https://doi.org/10.4271/2007-01-4017
- Idicheria , C.A. , and Pickett , L.M. Ignition, Soot Formation, and End-of-Combustion Transients in Diesel Combustion Under High-EGR Conditions International Journal of Engine Research 12 4 376 392 2011