This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Proof of Concept for Hardware-in-the-Loop Based Knock Detection Calibration
Technical Paper
2021-01-0424
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Knock control is one of the most vital functions for safe and fuel-efficient operation of gasoline engines. However, all knock control strategies rely on accurate knock detection to operate the engine close to the optimal set point.
Knock detection is usually calibrated on the engine test bench, requiring the engine to run with knocking combustion in a time-consuming multi-stage campaign. Model-based calibration significantly reduces calibration loops on the test bench. However, this method requires a large effort in building and validating the model, which is often limited by the lack of function documentation, available measurements or hardware representation. As the software models are often not available, function structures vary between manufacturers and sub model functions are often documented as black boxes. Hence, using the model-based approach is not always possible.
This article presents a black box calibration approach for knock detection with minimal software documentation where the Engine Control Unit is operated on a Hardware-in-the-Loop rig. For this specific approach, a playback of the recorded engine knock traces is fed sequentially into the Engine Control Unit. To achieve fast runtimes, an automated Hardware-in-the-Loop environment is implemented with the help of MATLAB, ETAS INCA-MIP and IPG RealtimeMaker. This setup allows to evaluate variations of knock window lengths, knock window start angles and filter combinations. This paper describes a method to calibrate the Engine Control Unit’s function, without detailed architectural knowledge of the software, to accurately detect the knocking combustion cycles.
The validation of the calibration from the introduced Hardware-in-the-Loop method reveals an acceptable accuracy (<5% error) and is therefore suitable for knock detection. This method significantly decreases the required engine test-bench time and human effort in comparison to conventional approaches and is better suited than the model-based approach in some cases.
Authors
Citation
Meli, M., Pischinger, S., kansagara, J., Dönitz, C. et al., "Proof of Concept for Hardware-in-the-Loop Based Knock Detection Calibration," SAE Technical Paper 2021-01-0424, 2021, https://doi.org/10.4271/2021-01-0424.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Guse , D. , Heusch , C. , Klein , S. , Fahrbach , T. et al. Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches SAE Technical Paper 2020-01-0245 2020 http://dx.doi.org/10.4271/2020-01-0245
- Xia , F. , Lee , S.-Y. , Andert , J. , Kampmeier , A. et al. Crank-Angle Resolved Real-Time Engine Modelling: A Seamless Transfer from Concept Design to HiL Testing SAE Int. J. Engines 11 6 1385 1398 2018 10.4271/2018-01-1245
- Lee , S.-Y. , Andert , J. , Neumann , D. , Querel , C. et al. Hardware-in-the-Loop-Based Virtual Calibration Approach to Meet Real Driving Emissions Requirements SAE Int. J. Engines 11 6 1479 1504 2018 10.4271/2018-01-0869
- Xia , F. , Dorscheidt , F. , Lücke , S. , Andert , J. et al. Experimental Proof-of-Concept of HiL Based Virtual Calibration for a Gasoline Engine with a Three-Way-Catalyst SAE Technical Paper 2019-01-2301 2019 http://dx.doi.org/10.4271/2019-01-2301
- Guse , D. , Pischinger , S. , Nijs , M. , and Tegelkamp , S. Objektivierung der Fahrbarkeit von Pkw auf dynamischen EiL-Motorprüfständen MTZ Extra 24 S1 50 57 2019 10.1007/s41490-019-0007-9
- Corti , E. , Forte , C. , Cavina , N. , Mancini , G. et al. Automatic Combustion Control for Calibration Purposes in a GDI Turbocharged Engine SAE Technical Paper 2014-01-1346 . 2014 http://dx.doi.org/10.4271/2014-01-1346
- Corti , E. , Cerofolini , A. , Cavina , N. , Forte , C. et al. Automatic Calibration of Control Parameters based on Merit Function Spectral Analysis Energy Procedia 45 919 928 2014 10.1016/j.egypro.2014.01.097
- Corti , E. , Forte , C. , Mancini , G. , and Moro , D. Automatic Combustion Phase Calibration with Extremum Seeking Approach J. Eng. Gas Turbines Power 136 9 2014 10.1115/1.4027188
- Corti , E. , Cavina , N. , Cerofolini , A. , Forte , C. et al. Transient Spark Advance Calibration Approach Energy Procedia 45 967 976 2014 10.1016/j.egypro.2014.01.102
- Gotter , A. Brennraumdruckbasierte Motorsteuerung für Ottomotoren 978-3-938363-55-3 2009
- Zhao , K. , Wu , Y. , and Shen , T. Stochastic Knock Control with Beta Distribution Learning for Gasoline Engines IFAC-PapersOnLine 51 31 125 130 2018 10.1016/j.ifacol.2018.10.023
- Borg , J.M. , Saikalis , G. , Oho , S. , Cheok , K.C. et al. AUTOMATIC ON-LINE TUNING OF THE KNOCK DETECTION SYSTEM ON AN ECU IFAC Proceedings Volumes 39 16 324 329 2006 10.3182/20060912-3-DE-2911.00058
- Reif , K. Gasoline Engine Management: Systems and Components Wiesbaden Bosch Professional Automotive Information, Springer Vieweg 2015 978-3-658-03963-9
- Heywood , J.B. Internal Combustion Engine Fundamentals New York McGraw-Hill Series in Mechanical Engineering, McGraw-Hill 1988 007028637X
- Zhou , X. , Xin , B. , Li , J. , and Sun , P. Mega Knock Detection and Inhibition System for Turbo GDI Engine IFAC-PapersOnLine 51 31 549 552 2018 10.1016/j.ifacol.2018.10.121
- Wang , Z. , Liu , H. , and Reitz , R.D. Knocking Combustion in Spark-Ignition Engines Progress in Energy and Combustion Science 61 78 112 2017 10.1016/j.pecs.2017.03.004
- Carstens-Behrens , S. , Urlaub , M. , Böhme , J.F. , Förster , J. et al. FEM Approximation of Internal Combustion Chambers for Knock Investigations SAE Technical Paper 2002-01-0237 2002 http://dx.doi.org/10.4271/2002-01-0237
- Gulzar , M. , Talal Jameel , M. , Tariq , S. , and Khalid , U. Geometric Modeling of the Frequency of an Acoustic Detonation Pressure Wave in a Standard Spark Ignition Engine AMM 392 146 150 2013 10.4028/www.scientific.net/AMM.392.146
- Draper , C.S. The Physical Processes Accompanying Detonation in the Internal Combustion Engine: The Physical Processes Accompanying Detonation in the Internal Combustion Engine Massachusetts Institute of Technology
- Wang , Z. , Liu , H. , Song , T. , Qi , Y. et al. Relationship Between Super-Knock and Pre-ignition International Journal of Engine Research 16 2 166 180 2015 10.1177/1468087414530388
- Stotsky , A. Statistical Algorithms for Engine Knock Detection International Journal of Automotive Technology 8 3 259 268
- Leppard , W.R. Individual-Cylinder Knock Occurrence and Intensity in Multicylinder Engines SAE Technical Paper 820074 . 1982 http://dx.doi.org/10.4271/820074
- Siano , D. , Panza , M.A. , and D’Agostino , D. Knock Detection Based on MAPO Analysis, AR Model and Discrete Wavelet Transform Applied to the In-Cylinder Pressure Data: Results and Comparison SAE Int. J. Engines 8 1 1 13 2015 10.4271/2014-01-2547
- Cho , S. , Park , J. , Song , C. , Oh , S. et al. Prediction Modeling and Analysis of Knocking Combustion using an Improved 0D RGF Model and Supervised Deep Learning Energies 12 5 844 2019 10.3390/en12050844
- Naber , J. , Blough , J.R. , Frankowski , D. , Goble , M. et al. Analysis of Combustion Knock Metrics in Spark-Ignition Engines SAE Technical Paper 2006-01-0400 . 2006 http://dx.doi.org/10.4271/2006-01-0400
- Fischer , M. , Günther , M. , Röpke , K. , Lindemann , M. et al. Klopferkennung im Ottomotor MTZ Motortech Z 64 3 186 195 2003 10.1007/BF03226689
- Gühmann , C. , Lachmann , S. , Röpke , K. , Tahl , S. et al. Messtechnische Untersuchung von Störgeräuschen in Klopfregelsystemen MTZ Motortech Z 67 1 40 47 2006 10.1007/BF03225377
- LeBlanc , D.C. Statistics: Concepts and Applications for Science Boston Jones and Bartlett 2004 9780763746995