This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Accurately Simulating the Performance of Gasoline-Like Fuels in 1-D Hydraulic Injection System Models Operating at High Pressures
Technical Paper
2021-01-0389
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Recent research has shown that gasoline compression ignition (GCI) improves the soot-NOx tradeoff of traditional diesel engines due to the beneficial properties of light distillate fuels. However, system level optimization of a new engine concept is ultimately needed to maximize fuel economy and emissions improvements. Along with air and aftertreatment systems, the fuel system also requires further development to enable GCI. One important design tool for fuel system hardware is 1-D hydraulic modeling. Although accurate tabulations of diesel or equivalent calibration fluid properties are available in 1-D modelling software packages, the same situation does not exist for gasoline-like fuels, especially at conditions encountered in the high-pressure injection equipment needed to support GCI. This study presents a methodology for generating accurate liquid property databases of complex, multi-component light distillate fuels that can be used in high-pressure 1-D hydraulic models. The technique can be employed in situations where property tables do not exist in the software or when direct measurement data is unavailable across the conditions of interest. A typical single component surrogate for gasoline is shown to be ineffective at capturing the hydraulic behavior of a high-pressure injection system reaching 2500 bar. However, using the new methodology for generating liquid properties shows that a validated diesel injector model can easily be adapted to gasoline-like fuels with minimal recalibration of discharge coefficients. After this process, the 1-D model can reproduce experimentally measured injected quantities, injection rate shapes, hydraulic delays, and needle lift profiles for high-pressure, heavy-duty injectors operating with a light distillate fuel.
Authors
Topic
Citation
Tzanetakis, T., Voice, A., and Traver, M., "Accurately Simulating the Performance of Gasoline-Like Fuels in 1-D Hydraulic Injection System Models Operating at High Pressures," SAE Technical Paper 2021-01-0389, 2021, https://doi.org/10.4271/2021-01-0389.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 |
Also In
References
- U.S. Energy Information Administration
- International Energy Agency
- Zhang , Y. , Voice , A. , Tzanetakis , T. , Traver , M. et al. An Evaluation of Combustion and Emissions Performance with Low Cetane Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine J. Eng. Gas Turb. Power. 138 10 2016 10.1115/1.4032879
- Zhang , Y. , Sommers , S. , Yuanjiang , P. , Kumar , P. et al. Mixing-Controlled Combustion of Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Compression Ignition Engine SAE Technical Paper 2017-01-0696 2017 https://doi.org/10.4271/2017-01-0696
- Lee , J. , Zhang , Y. , Tzanetakis , T. , Traver , M. et al. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System SAE Technical Paper 2017-01-1000 2017 https://doi.org/10.4271/2017-01-1000
- Zhang , Y. , Kumar , P. , Traver , M. , and Cleary , D. Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Int. J. Engines 9 2 1021 1035 2016 https://doi.org/10.4271/2016-01-0764
- Zhang , Y. , Kumar , P. Traver , M. et al. An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine SAE Technical Paper 2018-01-0226 2018 https://doi.org/10.4271/2018-01-0226
- Cho , K. , Zhao , L. , Ameen , M. , Zhang , Y. et al. Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors SAE Technical Paper 2019-01-1145 2019 https://doi.org/10.4271/2019-01-1145
- Cho , K. , Zhang , Y. , and Cleary , D. Investigation of Fuel Effects on Combustion Characteristics of Partially Premixed Compression Ignition (PPCI) Combustion Mode at Part-Load Operations SAE Int. J. Engines 11 6 1371 1383 2018 https://doi.org/10.4271/2018-01-0897
- Zhang , Y. , Pei , Y. , Engineer , N. , Cho , K. et al. CFD-Guided Combustion Strategy Development for a Higher Reactivity Gasoline in a Light-Duty Gasoline Compression Ignition Engine SAE Technical Paper 2017-01-0740 2017 https://doi.org/10.4271/2017-01-0740
- Cho , K. , Latimer , E. , Lorey , M. , Cleary , D. et al. Gasoline Fuels Assessment for Delphi’s Second Generation Gasoline Direct-Injection Compression Ignition (GDCI) Multi-Cylinder Engine SAE Int. J. Engines 10 4 1430 1442 2017 https://doi.org/10.4271/2017-01-0743
- Storey , J. , Lewis , S. , Moses-DeBusk , M. , Connatser , R. et al. Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel SAE Int. J. Engines 10 4 1454 1464 2017 https://doi.org/10.4271/2017-01-0747
- Kolodziej , C. , Sellnau , M. , Cho , K. , and Cleary , D. Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels SAE Int. J. Engines 9 2 979 1001 2016 https://doi.org/10.4271/2016-01-0759
- Lee , J. , Tzanetakis , T. , Zhang , Y. , Traver , M. et al. Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels SAE Technical Paper 2019-01-1185 2019 https://doi.org/10.4271/2019-01-1185
- ExxonMobil
- Sellnau , M. , Foster , M. , Moore , W. , Sinnamon , J. et al. Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition SAE Technical Paper 2019-01-1154 2019 https://doi.org/10.4271/2019-01-1154
- Kargul , J. , Stuhldreher , M. , Barba , D. , Schenk , C. et al. Benchmarking a 2018 Toyota Camry 2.5-Liter Atkinson Cycle Engine with Cooled-EGR SAE Int. J. Adv. & Curr. Prac. in Mobility 1 2 601 638 2019 https://doi.org/10.4271/2019 01-0249
- Sellnau , M. , Cho , K. , Zhang , Y. , and Cleary , D. Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition (GDCI) Presented at 28th Aachen Colloquium on Automobile and Engine Technology Aachen, Germany October 7-9 2019
- Pei , Y. , Pal , P. , Zhang , Y. , Traver , M. et al. CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer SAE Int. J. Adv. & Curr. Prac. in Mobility 1 1 166 179 2019 https://doi.org/10.4271/2019-01-0001
- Pei , Y. , Zhang , Y. , Kumar , P. , Traver , M. et al. CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel SAE Int. J. Commer. Veh. 10 2 532 546 2017 https://doi.org/10.4271/2017-01-0550
- Kumar , P. , Zhang , Y. , Traver , M. , and Cleary , D. Simulation Guided Air System Design for a Low Reactivity Gasoline-Like Fuel under Partially-Premixed Combustion in a Heavy-Duty Diesel Engine SAE Technical Paper 2017-01-0751 2017 https://doi.org/10.4271/2017-01-0751
- Kumar , P. , Pei , Y. , Traver , M. , and Watson , J. System Level 1-D Analysis of an Air-System for a Heavy-Duty Gasoline Compression Ignition Engine SAE Technical Paper 2019-01-0240 2019 https://doi.org/10.4271/2019-01-0240
- Kumar , P. , Zhang , Y. , Traver , M. , and Watson , J. System-level 1-D Analysis to Investigate Variable Valve Actuation Benefits in a Heavy-Duty Gasoline Compression Ignition Engine SAE Technical Paper 2020-01-1130 2020 https://doi.org/10.4271/2020-01-1130
- Won , H.-W. , Peters , N. , Tait , N. , and Kalghatgi , G. Sufficiently Premixed Compression Ignition of a Gasoline-Like Fuel Using Three Different Nozzles in a Diesel Engine P. I. Mech. Eng. D-J. Aut. 226 5 698 708 2012 https://doi.org/10.1177/0954407011423453
- Won , H.-W. , Pitsch , H. , Tait , N. , and Kalghatgi , G. Some Effects of Gasoline and Diesel Mixtures on Partially Premixed Combustion and Comparison with the Practical Fuels Gasoline and Diesel in a Compression Ignition Engine P. I. Mech. Eng. D-J. Aut. 226 9 1259 1270 2012 https://doi.org/10.1177/0954407012440075
- Ciatti , S. and Subramanian , S.N. An Experimental Investigation of Low-Octane Gasoline in Diesel Engines J. Eng. Gas Turb. Power 133 9 2011 https://doi.org/10.1115/1.4002915
- Kolodziej , C.P. , Ciatti , S. , Vuilleumier , D. , Adhidary , B.D. et al. Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure SAE Technical Paper 2014-01-1302 2014 https://doi.org/10.4271/2014-01-1302
- Sellnau , M. , Hoyer , K. , Moore , W. , Foster , M. et al. Advancement of GDCI Engine Technology for US 2025 CAFÉ and Tier 3 Emissions SAE Technical Paper 2018-01-0901 2018 https://doi.org/10.4271/2018-01-0901
- Zhang , J. , Tang , M. , Atkinson , W. , Schmidt , H. et al. Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector SAE Technical Paper 2020-01-0323 2020 https://doi.org/10.4271/2020-01-0323
- Chaufour , P. , Millet , G. , Hedna , M. , Neyrat , S. et al. Advanced Modeling of a Heavy-Truck Unit-Injector System and Its Applications in the Engine Design Process SAE Technical Paper 2004-01-0020 2004 https://doi.org/10.4271/2004-01-0020
- Kiss , T. and Wolverton , M. Analytical Comparison of 2 and 3 Way Digital Valves for Use on Direct Needle Control Fuel Injectors SAE Technical Paper 2004-01-0032 2004 https://doi.org/10.4271/2004-01-0032
- Mulemane , A. , Han , J. , Lu , P. , Yoon , S. et al. Modeling Dynamic Behavior of Diesel Fuel Injection Systems SAE Technical Paper 2004-01-0536 2004 https://doi.org/10.4271/2004-01-0536
- Catania , A. and Ferrari , A. Advanced Mathematical Modeling of Electronic Unit-Injector Systems for Heavy Duty Diesel Engine Application SAE Int. J. Commer. Veh. 1 1 134 151 2009 https://doi.org/10.4271/2008-01-1195
- Akiyama , H. , Yuasa , H. , Kato , A. , Saiki , T. et al. Precise Fuel Control of Diesel Common-Rail System by Using OFEM SAE Technical Paper 2010-01-0876 2010 https://doi.org/10.4271/2010-01-0876
- Tan , Y. , Kiedaisch , J. , and Gravante , S. Diesel Fuel Injector Design Optimization Using CFD and 1D Simulation SAE Technical Paper 2012-01-1970 2012 https://doi.org/10.4271/2012-01-1970
- P K , J. Feasibility Study of Impulse Amplification System for Probable Diesel Fuel Injection Application SAE Technical Paper 2013-01-2556 2013 https://doi.org/10.4271/2013-01-2556
- Ferrari , A. , Mittica , A. , and Spessa , E. Benefits of Hydraulic Layout Over Driving System in Piezo-Injectors and Proposal of a New-Concept CR Injector with an Integrated Minirail Appl. Energ. 103 243 255 2013 10.1016/j.apenergy.2012.09.039
- Zhang , X. , Palazzolo , A. , Kweon , C. , Thomas , E. et al. Direct Fuel Injector Power Drive System Optimization SAE Int. J. Engines 7 3 1137 1153 2014 https://doi.org/10.4271/2014-01-1442
- Payri , R. , Bracho , G. , Gimeno , J. , and Bautista , A. Rate of Injection Modelling for Gasoline Direct Injectors Energ. Convers. Manage. 166 424 432 2018 10.1016/j.enconman.2018.04.041
- Ferrari , A. and Pietro , P. Fully Predictive Common Rail Fuel Injection Apparatus Model and its Application to Global System Dynamics Analyses Int. J. Engine Res. 18 3 273 290 2018 10.1177/1468087416653246
- Payri , R. , Salvador , F.J. , Martí-Aldaraví , P. , and Martínez-López , J. Using One-Dimensional Modeling to Analyze the Influence of the Use of Biodiesels on the Dynamic Behavior of Solenoid-Operated Injectors in Common Rail Systems: Detailed Injection System Model Energ. Convers. Manage. 54 90 99 2012 10.1016/j.enconman.2011.10.004
- Salvador , F.J. , Gimeno , J. , De la Morena , J. , and Carreres , M. Using One-Dimensional Modeling to Analyze the Influence of the Use of Biodiesels on the Dynamic Behavior of Solenoid-Operated Injectors in Common Rail Systems: Results of the Simulations and Discussion Energ. Convers. Manage. 54 122 132 2012 10.1016/j.enconman.2011.10.007
- Kolade , B. , Morel , T. , and Kong , S. Coupled 1-D/3-D Analysis of Fuel Injection and Diesel Engine Combustion SAE Technical Paper 2004-01-0928 2004 https://doi.org/10.4271/2004-01-0928
- Piano , A. , Millo , F. , Postrioti , L. , Biscontini , G. et al. Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies SAE Int. J. Engines 9 1 565 575 2016 https://doi.org/10.4271/2016-01-0563
- Piano , A. , Boccardo , G. , Millo , F. , Cavicchi , A. et al. Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector SAE Int. J. Engines 10 4 2129 2140 2017 https://doi.org/10.4271/2017-24-0012
- Ferrari , A. and Mittica , A. Response of Different Injector Typologies to Dwell Time Variations and a Hydraulic Analysis of Closely-Coupled and Continuous Rate Shaping Injection Schedules Appl. Energ. 169 899 911 2016 10.1016/j.apenergy.2016.01.120
- Sapio , F. , Piano , A. , Millo , F. , and Pesce , F. Digital Shaping and Optimization of Fuel Injection Pattern for a Common Rail Automotive Diesel Engine Through Numerical Simulation SAE Technical Paper 2017-24-0025 2017 https://doi.org/10.4271/2017-24-0025
- Piano , A. , Millo , F. , Sapio , F. , and Pesce , F. Multi-Objective Optimization of Fuel Injection Pattern for a Light-Duty Diesel Engine through Numerical Simulation SAE Int. J. Engines 11 6 1093 1107 2018 https://doi.org/10.4271/2018-01-1124
- Hofmann , O. , Schuckert , S. , Wachtmeister , G. , and Rixen , D. Optimal Injection Strategies to Compensate for Injector Aging in Common Rail Fuel Systems SAE Int. J. Engines 11 6 1083 1092 2018 https://doi.org/10.4271/2018-01-1160
- Millo , F. , Piano , A. , Peiretti Paradisi , B. , Marzano , M.R. et al. Development and Assessment of an Integrated 1D-3D CFD Codes Coupling Methodology for Diesel Engine Combustion Simulation and Optimization Energies 13 7 1612 1632 2020 10.3390/en13071612
- Arcoumanis , C. , Gavaises , M. , Bostock , P. , and Horrocks , R. Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems SAE Technical Paper 950078 1995 https://doi.org/10.4271/950078
- Kolade , B. , Boghosian , M. , Reddy , P. , and Gallagher , S. Development of a General Purpose Thermal-Hydraulic Software and its Application to Fuel Injection Systems SAE Technical Paper 2003-01-0702 2003 https://doi.org/10.4271/2003-01-0702
- Ferrari , A. , Pizzo , P. , and Paolicelli , F. Common Feeding Injection System Equipped with Reduced-Leakage Solenoid Injectors SAE Technical Paper 2014-01-2735 2014 https://doi.org/10.4271/2014-01-2735
- Ferrari , A. , Pizzo , P. , and Vitali , R. Development and Validation Procedure of a 1D Predictive Model for Simulation of a Common Rail Fuel Injection System Controlled with a Fuel Metering Valve SAE Int. J. Engines 11 4 401 422 2018 https://doi.org/10.4271/03-11-04-0027
- Tzanetakis , T. , Traver , M. , Costanzo , V. , Medina , R. et al. Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis SAE Int. J. Adv. & Curr. Prac. in Mobility 1 2 654 674 2019 https://doi.org/10.4271/2019-01-0263
- Tzanetakis , T. , Sellnau , M. , Costanzo , V. , Traver , M. et al. Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline SAE Technical Paper 2020-01-0616 2020 https://doi.org/10.4271/2020-01-0616
- GT-SUITE (v2019, Build 3.0001-Final) Computer Software Westmont, IL Gamma Technologies LLC. 2015
- Desantes , J. , Salvador , F. , Carreres , M. , and Jaramillo , D. Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures SAE Int. J. Fuels Lubr. 8 1 190 199 2015 https://doi.org/10.4271/2015-01-0951
- Payri , R. , Salvador , F. , Carreres , M. , and Belmar-Gil , M. An Investigation on the Fuel Temperature Variations Along a Solenoid Operated Common-Rail Ballistic Injector by Means of an Adiabatic 1D Model SAE Technical Paper 2018-01-0275 2018 https://doi.org/10.4271/2018-01-0275
- Salvador , F.J. , Carreres , M. , De la Morena , J. , and Martínez-Miracle , E. Computational Assessment of Temperature Variations Through Calibrated Orifices Subjected to High Pressure Drops: Application to Diesel Injection Nozzles Energy Convers. Manage. 171 438 451 2018 10.1016/j.enconman.2018.05.102
- Salvador , F.J. , Gimeno , J. , Martín , J. , and Carreres , M. Thermal effects on the Diesel Injector Performance Through Adiabatic 1D Modelling. Part I: Model Description and Assessment of the Adiabatic Flow Hypothesis Fuel 260 116348 2020 10.1016/j.fuel.2019.116348
- Chorazewski , M. , Dergal , F. , Sawaya , T. , Mokbel , I. et al. Thermophysical Properties of Normafluid (ISO 4113) Over Wide Pressure and Temperature Ranges Fuel 105 440 450 2013 10.1016/j.fuel.2012.05.059
- Mueller , C.J. , Cannella , W.J. , Bruno , T.J. , Bunting , B. et al. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics Energ. Fuel 26 6 3284 3303 2012 10.1021/ef300303e
- Su , X. , Ra , Y. , and Reitz , R. A Surrogate Fuel Formulation Approach for Real Transportation Fuels with Application to Multi-Dimensional Engine Simulations SAE Int. J. Fuels Lubr. 7 1 236 249 2014 https://doi.org/10.4271/2014-01-1464
- Abianeh , O.S. , Oehlschlaeger , M.A. , and Sung , C.-J. A Surrogate Mixture and Kinetic Mechanism for Emulating the Evaporation and Autoignition Characteristics of Gasoline Fuel Combust. Flame 162 10 3773 3784 2015 10.1016/j.combustflame.2015.07.015
- Ra , Y. and Reitz , R.D. A Combustion Model for Multi-Component Fuels Using a Physical Surrogate Group Chemistry Representation (PSGCR) Combust. Flame 162 10 3456 3481 2015 10.1016/j.combustflame.2015.05.014
- Ahmed , A. , Goteng , G. , Shankar , V.S.B. , Al-Qurashi , K. et al. A Computational Methodology for Formulating Gasoline Surrogate Fuels with Accurate Physical and Chemical Kinetic Properties Fuel 143 290 300 2015 10.1016/j.fuel.2014.11.022
- Jameel , A.G.A. , Naser , N. , Issayev , G. , Touitou , J. et al. A Minimalist Functional Group (MFG) Approach for Surrogate Fuel Formulation Combust. Flame 192 250 271 2018 10.1016/j.combustflame.2018.01.036
- Wang , H. , Xu , R. , Wang , K. , Bowman , C.T. et al. A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry - I. Evidence from Experiments, and Thermodynamic, Chemical Kinetic and Statistical Considerations Combust. Flame 193 502 519 2018 10.1016/j.combustflame.2018.03.019
- Sarathy , S.M. , Farooq , A. , and Kalghatgi , G.T. Recent Progress in Gasoline Surrogate Fuels Prog. Energ. Combust. 65 67 108 2018 10.1016/j.pecs.2017.09.004
- Wu , Z. , Mao , Y. , Yu , L. , Wang , S. et al. Surrogate Formulation for Marine Diesel Considering Some Important Fuel Physical-Chemical Properties Energ. Fuel 33 4 3539 3550 2019 10.1021/acs.energyfuels.8b04253
- Elwardany , A. , Badra , J. , Sim , J. , Khurshid , M. et al. Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates SAE Technical Paper 2016-01-0878 2016 https://doi.org/10.4271/2016-01-0878
- Voice , A.K. and Tzanetakis , T. September 29, 2020
- European Committee for Standardization 2017
- Knothe , G. A Comprehensive Evaluation of the Cetane Numbers of Fatty Acid Methyl Esters Fuel 119 6 13 2014 10.1016/j.fuel.2013.11.020
- Geller , D.P. and Goodrum , J.W. Effects of Specific Fatty Acid Methyl Esters on Diesel Fuel Lubricity Fuel 83 17 2351 2356 2004 10.1016/j.fuel.2004.06.004
- Arkoudeas , P. , Karonis , D. , Zannikos , F. , and Lois , E. Lubricity Assessment of Gasoline Fuels Fuel Process. Technol. 122 107 119 2014 10.1016/j.fuproc.2014.01.008
- Lacey , P. and Mason , R. Fuel Lubricity: Statistical Analysis of Literature Data SAE Technical Paper 2000-01-1917 2000 https://doi.org/10.4271/2000-01-1917
- Voice , A. , Tzanetakis , T. , and Traver , M. Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives SAE Technical Paper 2017-01-0871 2017 https://doi.org/10.4271/2017-01-0871
- International Organization for Standardization 2015
- SAE International Gasoline Fuel Injector Spray Measurement and Characterization SAE Standard J2715 Mar, 2007
- Torelli , R. , Matusik , K. , Nelli , K. , Kastengren , A. et al. Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry SAE Int. J. Fuels Lubr. 11 4 379 295 2018 https://doi.org/10.4271/2018-01-0303
- Bower , G. and Foster , D. A Comparison of the Bosch and Zuech Rate of Injection Meters SAE Technical Paper 910724 1991 https://doi.org/10.4271/910724
- Shi , J. , Guerrassi , N. , Dober , G. , Karimi , K. et al. Complex Physics Modelling of Diesel Injector Nozzle Flow and Spray Supported by New Experiments Presented at THIESEL 2014 Conference on Thermo and Fluid Dynamic Processes in Direct Injection Engines Valencia, Spain September, 2014
- Ferrari , A. , Mittica , A. , Paolicelli , F. , and Pizzo , P. Hydraulic Characterization of Solenoid-actuated Injectors for Diesel Engine Common Rail Systems Energy Proced. 101 878 885 2016 10.1016/j.egypro.2016.11.111
- Matusik , K.E. , Duke , D.J. , Kastengren , A.L. , Sovis , N. et al. High-Resolution X-Ray Tomography of Engine Combustion Network Diesel Injectors Int. J. Engine Res. 00 1 14 2017 10.1177/1468087417736985
- Macian , V. , Bermudez , V. , Payri , R. , and Gimeno , J. New Technique for Determination of Internal Geometry of a Diesel Nozzle with the Use of Silicon Methodology Exp. Techniques 27 39 43 2003 10.1111/j.1747-1567.2003.tb00107.x
- Salvador , F.J. , Gimeno , J. Morena , J. , and Carreres , M. Comparison of Different Techniques for Characterizing the Diesel Injector Internal Dimensions Exp. Techniques 42 467 472 2018 10.1007/s40799-018-0246-1
- Bianchi , G. , Falfari , S. , Pelloni , P. , Kong , S. et al. Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics SAE Technical Paper 2002-01-0213 2002 https://doi.org/ 10.4271/2002-01-0213
- Zhao , J. , Yue , P. , Wei , K. , and Grekhov , L. Investigating Effects of Different Influence Factors on the Dynamic Response of a Common-Rail Injector SAE Technical Paper 2019-01-0272 2019 https://doi.org/ 10.4271/2019-01-0272
- Aspen , H.Y.S.Y.S. Computer Software Bedford, MA Aspen Technology Inc. 1994
- CONVERGE (Version 3.0) Computer Software Madison, WI Convergent Science 1997
- Pei , Y. , Torelli , R. , Tzanetakis , T. , Zhang , Y. et al. Modeling the Fuel Spray of a High Reactivity Gasoline Under Heavy-Duty Diesel Engine Conditions Proceedings of the ASME 2017 Internal Combustion Engine Division Fall Technical Conference. Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids, Numerical Simulation, Engine Design and Mechanical Development V002T06A002 10.1115/ICEF2017-3530
- Zhang , Y. , Voice , A. , Pei , Y. , Traver , M. , and Cleary , D. A Computational Investigation of Fuel Chemical and Physical Properties Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine J. Energy Resour. Technol. 140 10 102202 2018 10.1115/1.4040010
- Payri , R. , Salvador , F.J. , Gimeno , J. , and Bracho , G. A New Methodology for Correcting the Signal Cumulative Phenomenon on Injection Rate Measurements Exp. Techniques 32 1 46 49 2008 10.1111/j.1747-1567.2007.00188.x
- Postrioti , L. , Buitoni , G. , Pesce , F.C. , and Ciaravino , C. Zeuch Method-Based Injection Rate Analysis of a Common Rail System Operated with Advanced Injection Strategies Fuel 128 188 198 2014 10.1016/j.fuel.2014.03.006
- Yasutomi , K. , Hwang , J. , Manin , J. , Pickett , L. et al. Diesel Injector Elasticity Effects on Internal Nozzle Flow SAE Technical Paper 2019-01-2279 2019 https://doi.org/ 10.4271/2019-01-2279
- Torelli , R. , Som , S. , Pei , Y. , Zhang , Y. et al. Comparison of In-Nozzle Flow Characteristics of Naphtha and N-Dodecane Fuels SAE Technical Paper 2017-01-0853 2017 https://doi.org/ 10.4271/2017-01-0853
- Payri , R. , García , J.M. , Salvador , F.J. , and Gimeno , J. Using Spray Momentum Flux Measurements to Understand the Influence of Diesel Nozzle Geometry on Spray Characteristics Fuel 84 5 551 561 2005 10.1016/j.fuel.2004.10.009
- Dernotte , J. , Hespel , C. , Foucher , F. , Houillé , S. et al. Influence of Physical Fuel Properties on the Injection Rate in a Diesel Injector Fuel 96 153 160 2012 10.1016/j.fuel.2011.11.073
- Payri , R. , García , A. , Domenech , V. , Durrett , R. et al. An Experimental Study of Gasoline Effects on Injection Rate, Momentum Flux and Spray Characteristics Using a Common Rail Diesel Injection System Fuel 97 390 399 2012 10.1016/j.fuel.2011.11.065
- Bianchi , G. , Falfari , S. , Parotto , M. , and Osbat , G. Advanced Modeling of Common Rail Injector Dynamics and Comparison with Experiments SAE Technical Paper 2003-01-0006 2003 https://doi.org/ 10.4271/2003-01-0006
- Tzanetakis , T. , Voice , A. , and Traver , M. Durability Study of a High-Pressure Common-Rail Fuel Injection System Using Lubricity Additive-Dosed Gasoline-Like Fuel SAE Int. J. Fuels Lubr. 11 4 319 335 2018 https://doi.org/ 10.4271/2018-01-0270
- Torelli , R. , Sforzo , B.A. , Matusik , K.E. , Kastegren , A.L. et al. Investigation of Shot-to-Shot Variability During Short Injections Presented at 14th Triennial International Conference on Liquid Atomization and Sprays Systems (ICLASS 2018) Chicago, IL, USA July 22-26 2018
- Torelli , R. , Matusik , K.E. , Sforzo , B.A. , Kastengren , A. et al. In-Nozzle Cavitation-Induced Orifice-to-Orifice Variations Using Real Injection Geometry and Gasoline-Like Fuels Presented at 10th International Symposium on Cavitation (CAV2018) Baltimore, MD, USA May 14-16 2018