This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Knock Model Covering Thermodynamic and Chemical Influences on the Two-Stage Auto-Ignition of Gasoline Fuels
Technical Paper
2021-01-0381
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Engine knock is limiting the efficiency of spark ignition engines and consequently further reduction of CO2 emissions. Thus, an combustion process simulation needs a well working knock model to take this phenomenon into account. As knocking events result from auto-ignitions, the basis of a knock model is the accurate modeling of the latter. For this, the introduced 0D/1D knock model calculates the Livengood-Wu integral to estimate the state of the pre-reactions of the unburnt mixture and considers the two-stage auto-ignition of gasoline fuels, which occurs at specific boundary conditions. The model presented in this publication is validated against measurement data of a single cylinder engine. For this purpose, more than 12 000 knocking working cycles are investigated, covering extensively varied operating conditions for a wide-ranging validation. This enables to analyze the influence of different gasoline fuels, varying compression ratios, turbulence levels, injection strategies, EGR, wall temperatures as well as engine loads and speeds on the prediction of the auto-ignition onset. To specify the auto-ignition onsets of so many measured working cycles an automated and yet reliable method, analyzing the bandpass filtered indicated cylinder pressure, is used. The input of the knock model is gained via pressure trace analysis of the corresponding measurement data. The predicted auto-ignition onset is then compared to the one of the respective measured working cycles. It is shown that the introduced 0D/1D knock model can accurately predict the auto-ignition onset for all of the investigated knocking working cycles at extensively varied operating conditions with a standard deviation below 2 °CA.
Authors
Citation
Hess, M., Grill, M., Bargende, M., and Kulzer, A., "Knock Model Covering Thermodynamic and Chemical Influences on the Two-Stage Auto-Ignition of Gasoline Fuels," SAE Technical Paper 2021-01-0381, 2021, https://doi.org/10.4271/2021-01-0381.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Splitter , D. , Pawlowski , A. , and Wagner , R. A Historical Analysis of the Co-Evolution of Gasoline Octane Number and Spark-Ignition Engines Frontiers in Mechanical Engineering 1 16 2297 3079 2016 10.3389/fmech.2015.00016
- Heywood , J.B. Internal Combustion Engine Fundamentals McGraw-Hill, Inc. 1988 0-07-028637-X
- Kleinschmidt , W. Selbstzündung im Klopfgrenzbereich von Serienmotoren Klopfregelung für Ottomotoren II 1 21 2006 3816926746
- Fandakov , A. , Grill , M. , Bargende , M. , and Casal Kulzer , A. Investigation of Thermodynamic and Chemical Influences on Knock for the Working Process Calculation 17th Stuttgart International Symposium 2017 10.1007/978-3-658-16988-6_13
- Schmid , A. , Grill , M. , Berner , H.J. , and Bargende , M. Transient Simulation with Scavenging in the Turbo Spark-Ignition Engine MTZ Worldwide 71 11 10 15 2010 10.1007/BF03227995
- Chen , L. , Li , T. , Yin , T. , and Zheng , B. A Predictive Model for Knock Onset in Spark-Ignition Engines with Cooled EGR Energy Conversion and Management 87 946 955 2014 10.1016/j.enconman.2014.08.002
- Douaud , A.M. , and Eyzat , P. Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines SAE Technical Paper 780080 1978 https://doi.org/10.4271/780080
- Elmqvist , C. , Lindström , F. , Ångström , H. , Grandin , B. et al. Optimizing Engine Concepts by Using a Simple Model for Knock Prediction SAE Technical Paper 2003-01-3123 2003 https://doi.org/10.4271/2003-01-3123
- Kalghatgi , G. , Morganti , K. , Algunaibet , I. , Sarathy , M. et al. Knock Prediction Using a Simple Model for Ignition Delay SAE Technical Paper 2016-01-0702 2016 https://doi.org/10.4271/2016-01-0702
- Franzke , D.E. 1981
- Worret , R. , Bernhardt , S. , Schwarz , F. , and Spicher , U. Application of Different Cylinder Pressure Based Knock Detection Methods in Spark Ignition Engines SAE Technical Paper 2002-01-1668 2002 https://doi.org/10.4271/2002-01-1668
- Schmid , A. , Grill , M. , Berner , H.-J. , and Bargende , M. Ein neuer Ansatz zur Vorhersage des ottomotorischen Klopfens Ottomotorisches Klopfen-irreguläre Verbrennung 2010 256 277 3816930476
- Hoepke , B. , Jannsen , S. , Kasseris , E. , and Cheng , W.K. EGR Effects on Boosted SI Engine Operation and Knock Integral Correlation SAE Int. J. Eng. 5 2 547 559 2012 https://doi.org/10.4271/2012-01-0707
- Burluka , A.A. , Liu , K. , Sheppard , C.G.W. , Smallbone , A.J. et al. The Influence of Simulated Residual and NO Concentrations on Knock Onset for PRFs and Gasolines SAE Technical Paper 2004-01-2998 2004 https://doi.org/10.4271/2004-01-2998
- Wayne , W.S. , Clark , N.N. , and Atkinson , C.M. Numerical Prediction of Knock in a Bi-Fuel Engine SAE Technical Paper 982533 1998 https://doi.org/10.4271/982533
- Fandakov , A. , Grill , M. , Bargende , M. , and Casal Kulzer , A. Two-Stage Knock , A. Model for the Development of Future SI Engine Concepts SAE Technical Paper 2018-01-0855 2018 https://doi.org/10.4271/2018-01-0855
- Fandakov , A. A Phenomenological Knock Model for the Development of Future Engine Concepts Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart Wiesbaden Springer Vieweg 2019 10.1007/978-3-658-24875-8
- Hess , M. , Grill , M. , Bargende , M. , and Casal Kulzer , A. New Criteria for 0D/1D Knock Models to Predict the Knock Boundary for Different Gasoline Fuels SAE Technical Paper 2021-01-0377 2021 https://doi.org/10.4271/2021-01-0377
- Livengood , J.C. , and Wu , P.C. Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines Symp. Int. Combustion 5 347 356 1955 10.1016/S0082-0784(55)80047-1
- Tanaka , S. , Ayala , F. , Keck , J.C. , and Heywood , J.B. Two-Stage Ignition in HCCI Combustion and HCCI Control by Fuels and Additives Combustion and Flame 132 219 239 2003 10.1016/S0010-2180(02)00457-1
- Fandakov , A. , Grill , M. , Bargende , M. , and Casal Kulzer , A. Two-Stage Ignition Occurrence in the End Gas and Modeling Its Influence on Engine Knock SAE Int. J. Eng. 10 4 2109 2128 2017 https://doi.org/10.4271/2017-24-0001
- Cai , L. , and Pitsch , H. Optimized Chemical Mechanism for Combustion of Gasoline Surrogate Fuels Combustion and Flame 162 5 1623 1637 2015 10.1016/j.combustflame.2014.11.018
- Pan , J. , Zhao , P. , Law , C.K. , and Wei , H. A Predictive Livengood-Wu Correlation for Two-stage Ignition International Journal of Engine Research 17 8 825 835 2016 10.1177/1468087415619516
- Weisser , G.A. 2001
- Burgdorf , K. , and Denbratt , I. Comparison of Cylinder Pressure Based Knock Detection Methods SAE Technical Paper 972932 1997 https://doi.org/10.4271/972932
- Brunt , M.F.J. , Pond , C.R. , and Biundo , J. Gasoline Engine Knock Analysis using Cylinder Pressure Data SAE Technical Paper 980896 1998 https://doi.org/10.4271/980896
- Cai , L. , Fandakov , A. , Mally , M. , Ramalingam , A. et al. 2017
- Cho , S. , Park , J. , Song , C. , Oh , S. et al. Prediction Modeling and Analysis of Knocking Combustion Using an Improved 0D RGF Model and Supervised Deep Learning Energies 12 5 844 2019 10.3390/en12050844
- Burke , S.M. , Burke , U. , Mc Donagh , R. , Mathieu , O. et al. An Experimental and Modeling Study of Propene Oxidation. Part 2: Ignition Delay Time and Flame Speed Measurements Combustion and Flame 162 2 296 314 2015 10.1016/j.combustflame.2014.07.032
- Schießl , R. , and Maas , U. Analysis of Endgas Temperature Inhomogeneities in an SI Engine by Laser-Induced Fluorescence Combustion and Flame 133 19 27 2003 10.1016/S0010-2180(02)00538-2
- Schießl , R. , Schubert , A. , and Maas , U. Temperature Fluctuations in the Unburned Mixture: Indirect Visualisation Based on LIF and Numerical Simulations SAE Technical Paper 2006-01-3338 2006 https://doi.org/10.4271/2006-01-3338