This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating
Technical Paper
2021-01-0348
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Event:
SAE WCX Digital Summit
Language:
English
Abstract
Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals. The reduced graphene oxide (rGO) suspended in polyalphaolefin (PAO) base oil was coated on Sn terminals via a dip-coating method. Insertion force tests with and without the rGO coating were performed on Sn terminals. The reduction of friction between two sliding metal surfaces while preserving the same level of electrical conduction has been successfully demonstrated. Comprehensive characterizations with four-probe resistance measurements and Raman spectroscopy were performed. In addition, we carried out a systematic study of the lubrication effect from both PAO and rGO for comparison. Given the advantages of low-cost and simple synthesis processes, rGO in PAO solution can be employed to lubricate electrical terminals to significantly reduce insertion force while maintaining good electrical conduction.
Authors
Citation
Zhang, S., Arfaei, B., and Chen, Z., "Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating," SAE Technical Paper 2021-01-0348, 2021, https://doi.org/10.4271/2021-01-0348.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Geim , A.K. and Novoselov , K.S. The Rise of Graphene Nat. Mater. 6 183 191 2007 https://doi:10.1038/nmat1849
- Pop , E. , Varshney , V. , and Roy , A.K. Thermal Properties of Graphene: Fundamentals and Applications MRS Bull. 37 1273 1281 2012 https://doi:10.1557/mrs.2012.203
- Pirkle , A. , Chan , J. , Venugopal , A. , Hinojos , D. et al. The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to SiO2 Appl. Phys. Lett. 99 2009 2012 2011 https://doi:10.1063/1.3643444
- Nair , R.R. , Blake , P. , Grigorenko , A.N. , Novoselov , K.S. , et al. Fine Structure Constant Defines Visual Transparency of Graphene Science 320 1308 2008 https://doi:10.1126/science.1156965
- Vadukumpully , S. , Paul , J. , Mahanta , N. , and Valiyaveettil , S. Flexible Conductive Graphene/poly(vinyl chloride) Composite Thin Films with High Mechanical Strength and Thermal Stability Carbon N. Y 49 198 205 2011 https://doi:10.1016/j.carbon.2010.09.004
- Rafiee , M.A. , Rafiee , J. , Wang , Z. , Song , H. , et al. ACS Nano 3 3884 3890 2009 https://doi:10.1021/nn9010472
- Prasai , D. , Tuberquia , J.C. , Harl , R.R. , Jennings , G.K. et al. Graphene: Corrosion-Inhibiting Coating ACS Nano. 6 1102 1108 2012 https://doi:10.1021/nn203507y
- Bunch , J.S. , Verbridge , S.S. , Alden , J.S. , Van Der Zande , A.M. et al. Impermeable Atomic Membranes from Graphene Sheets Nano Lett. 8 2458 2462 2008 https://doi:10.1021/nl801457b
- Berman , D. , Erdemir , A. , and Sumant , A.V. Graphene: A New Emerging Lubricant Mater. Today 17 31 42 2014 https://doi:10.1016/j.mattod.2013.12.003
- Chen , D. , Chen , S. , Yue , S. , Lu , B. et al. N-ZnO Nanorod Arrays/p-GaN Light-Emitting Diodes with Graphene Transparent Electrode J. Lumin. 216 116719 2019 https://doi:10.1016/j.jlumin.2019.116719
- Habibpour , O. , He , Z.S. , Strupinski , W. , Rorsman , N. et al. A W-band MMIC Resistive Mixer Based on Epitaxial Graphene FET IEEE Microw. Wirel. Components Lett. 27 168 170 2017 https://doi:10.1109/LMWC.2016.2646998
- Hsieh , Y.P. , Hofmann , M. , Chang , K.W. , Jhu , J.G. et al. Complete Corrosion Inhibition Through Graphene Defect Passivation ACS Nano. 8 443 448 2014 https://doi:10.1021/nn404756q
- Qian , Z. , Liu , F. , Hui , Y. , Kar , S. et al. Graphene as a Massless Electrode for Ultrahigh-Frequency Piezoelectric Nanoelectromechanical Systems Nano Lett. 15 4599 4604 2015 https://doi:10.1021/acs.nanolett.5b01208
- Booser , E. Friction, Wear, Lubrication--A Textbook in Tribology
- Sharma , B.K. , Doll , K.M. , and Erhan , S.Z. Oxidation, Friction Reducing, and Low Temperature Properties of Epoxy Fatty Acid Methyl Esters Green Chem. 9 469 474 2007 https://doi:10.1039/b614100e
- Wu , Y.Y. , Tsui , W.C. , and Liu , T.C. Experimental Analysis of Tribological Properties of Lubricating Oils with Nanoparticle Additives Wear 262 819 825 2007 https://doi:10.1016/j.wear.2006.08.021
- Rapoport , L. , Fleischer , N. , and Tenne , R. Fullerene-like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions Adv. Mater. 15 651 655 2003 https://doi:10.1002/adma.200301640
- Dai , W. , Kheireddin , B. , Gao , H. , and Liang , H. Roles of Nanoparticles in Oil Lubrication Tribol. Int. 102 88 98 2016 https://doi:10.1016/j.triboint.2016.05.020
- Mortier , R.M. , Fox , M.F. , and Orszulik , S.T. Chemistry and Technology of Lubricants: Third Edition Chem. Technol. Lubr. Third 2010 1 560 https://doi:10.1007/978-1-4020-8662-5
- Ye , C. , Liu , W. , Chen , Y. , and Yu , L. Room-Temperature Ionic Liquids: A Novel Versatile Lubricant Chem. Commun. 21 2244 2245 2001 https://doi:10.1039/b106935g
- Neville , A. , Morina , A. , Haque , T. , and Voong , M. Compatibility Between Tribological Surfaces and Lubricant Additives-How Friction and Wear Reduction can be Controlled by Surface/Lube Synergies Tribol. Int. 40 1680 1695 2007 https:doi:10.1016/j.triboint.2007.01.019
- Eswaraiah , V. , Sankaranarayanan , V. , and Ramaprabhu , S. Graphene-Based Engine Oil Nanofluids for Tribological Applications ACS Appl. Mater. Interfaces 3 4221 4227 2011 https://doi:10.1021/am200851z
- Berman , D. , Erdemir , A. , and Sumant , A.V. Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen Carbon N. Y. 2013 https://doi:10.1016/j.carbon.2013.03.006
- Zhang , S.N. , Arfaei , B. , and Chen , Z. Friction Force Reduction for Electrical Terminals using Graphene Coating Nanotechnology 32 35704 2020 https://doi:10.1088/1361-6528/abbddc
- Zhao , J. , Li , Y. , Wang , Y. , Mao , J. et al. Mild Thermal Reduction of Graphene Oxide as a Lubrication Additive for Friction and Wear Reduction RSC Adv. 7 1766 1770 2017 https://doi:10.1039/c6ra26488c
- USCAR 2020
- Ossonon , B.D. and Bélanger , D. Synthesis and Characterization of Sulfophenyl-Functionalized Reduced Graphene Oxide Sheets RSC Adv. 7 27224 27234 2017 https://doi:10.1039/c6ra28311j
- Zhu , Y. , Murali , S. , Cai , W. , Li , X. et al. Graphene and Graphene Oxide: Synthesis, Properties, and Applications Adv. Mater. 22 3906 3924 2010 https://doi:10.1002/adma.201001068
- Praveena , M. , Guha , K. , Ravishankar , A. , Biswas , S.K. et al. Total Internal Reflection Raman Spectroscopy of poly(alpha-olefin) Oils in a Lubricated Contact RSC Adv. 4 22205 22213 2014 https://doi:10.1039/c4ra02261k
- Li , S. , Li , Q. , Carpick , R.W. , Gumbsch , P. et al. The Evolving Quality of Frictional Contact with Graphene Nature 539 541 545 2016 https://doi:10.1038/nature20135
- Peng , S.A. , Jin , Z. , Ma , P. , Zhang , D.Y. et al. The Sheet Resistance of Graphene Under Contact and Its Effect on the Derived Specific Contact Resistivity Carbon N. Y. 82 500 505 2015 https://doi:10.1016/j.carbon.2014.11.001