This content is not included in your SAE MOBILUS subscription, or you are not logged in.

A Role of NO 2 on Soot Oxidation in DPFs and Effect of Soot Cake Thickness in Catalyzed DPFs Using Temperature-Programmed Oxidation and Electron Microscopic Visualization

Journal Article
2020-01-2201
ISSN: 2641-9637, e-ISSN: 2641-9645
Published September 15, 2020 by SAE International in United States
A Role of NO
<sub>2</sub>
 on Soot Oxidation in DPFs and Effect of Soot Cake Thickness in Catalyzed DPFs Using Temperature-Programmed Oxidation and Electron Microscopic Visualization
Sector:
Citation: Srilomsak, M. and Hanamura, K., "A Role of NO2 on Soot Oxidation in DPFs and Effect of Soot Cake Thickness in Catalyzed DPFs Using Temperature-Programmed Oxidation and Electron Microscopic Visualization," SAE Int. J. Adv. & Curr. Prac. in Mobility 3(1):528-538, 2021, https://doi.org/10.4271/2020-01-2201.
Language: English

References

  1. Kittelson , D. Engines and Nanoparticles: A Review J. Aerosol Sci 29 5–6 575 588 1998 1016/S0021-8502(97)10037-4
  2. Chameides , W. , and Bergin , M. Soot Takes Center Stage Science 297 5590 2214– 2215 2002 10.1126/science.1076866
  3. Ris , C. US EPA Health Assessment for Diesel Engine Exhaust: A Review Inhal. Toxicol. 19 229 239 2007 10.1080/08958370701497960
  4. Andreae , M. , and Ramanathan , V. Climate’s Dark Forcings Science 340 6130 280 281 2013 10.1126/science.1235731
  5. Kerr , R. Soot Is Warming the World Even More Than Thought Science 339 6118 382 2013 10.1126/science.339.6118.382
  6. Guan , B. , Zhan , R. , Lin , H. , and Huang , Z. Review of the State-of-the-Art of Exhaust Particulate Filter Technology in Internal Combustion Engines J Environ. Manage. 154 225 258 2015 10.1016/j.jenvman.2015.02.027
  7. Raza , M. , Chen , L. , Leach , F. , and Ding , S. A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques Energies 11 1417 2018 10.3390/en11061417
  8. Platt , S.M. , El Haddad , I. , Pieber , S.M. , et al. Gasoline Cars Produce More Carbonaceous Particulate Matter Than Modern Filter-Equipped Diesel Cars Sci Rep 7 4926 2017 10.1038/s41598-017-03714-9
  9. Konstandopoulos , A. , and Johnson , J. Wall-Flow Diesel Particulate Filters-Their Pressure Drop and Collection Efficiency SAE Technical Paper 890405 1989 https://doi.org/10.4271/890405
  10. Wirojsakunchai , E. , Schroeder , E. , Kolodziej , C. , Foster , D. , et al. Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process SAE Technical Paper 2007-01-0320 2007 https://doi.org/10.4271/2007-01-0320
  11. Sanui , R. , and Hanamura , K. Scanning Electron Microscopic Visualization of Bridge Formation inside the Porous Channels of Diesel Particulate Filters SAE Technical Paper 2016-01-9079 2016 https://doi.org/10.4271/2016-01-9079
  12. Sanui , R. , Srilomsak , M. , Hanamura , K. Effects of Flow Velocity and Particle Size on Soot Penetration Depth Determined by Competition of Bridge Formation 9th International Conference on Modeling and Diagnostics for Advanced Engine Systems, COMODIA 2017 Okayama; Japan July 2017
  13. Nakajima , S. , Sanui , R. , and Hanamura , K. Soot Trapping by High-permeability Porous Membrane Filter Made of Aggregates of Alumina Nanoparticles Int. J. Automotive Eng. 8 3 105 111 2017 10.20485/jsaeijae.8.3_105
  14. Setiabudi , A. , Makkee , M. , and Moulijn , J. The Role of NO2 and O2 in the Accelerated Combustion of Soot in Diesel Exhaust Gases Appl. Catal. B. Environ. 50 3 185 194 2004 10.1016/j.apcatb.2004.01.004
  15. Lee , K. , Seong , H. , and Choi , S. Detailed Analysis of Kinetic Reactions in Soot Oxidation by Simulated Diesel Exhaust Emissions Proceeding Combust. Inst. 34 2 3057 3065 2013 10.1016/j.proci.2012.06.121
  16. Seong , H. , and Choi , S. Oxidation-Derived Maturing Process of Soot, Dependent on O2 NO2 Mixtures and Temperatures Carbon 93 1068 1076 2015 10.1016/j.carbon.2015.07.008
  17. Gaddam , C. , Vander Wal , R. , Chen , X. , Yezerets , A. , et al. Reconciliation of Carbon Oxidation Rates and Activation Energies Based on Changing Nanostructure Carbon 98 545– 556 2016 10.1016/j.carbon.2015.11.035
  18. Singh , M. , Srilomsak , M. , Wang , Y. , Hanamura , K. , et al. Nanostructure Changes in Diesel Soot during NO 2 -O 2 Oxidation under Diesel Particulate Filter-Like Conditions toward Filter Regeneration International Journal of Engine Research 20 8–9 953 966 2019 10.1177/1468087418807608
  19. Srilomsak , M. , Inaba , M. , and Hanamura , K. Arc Generated Soot for a Comparison with Practical Diesel Soots Using Characterization Analyses with a Time-Lapse Regeneration Study on a DPF SAE Technical Paper 2019-01-2289 2019 https://doi.org/10.4271/2019-01-2289
  20. Srilomsak , M. , and Hanamura , K. Time-Lapse Visualization of Shrinking Soot in Diesel Particulate Filter during Active-Regeneration Using Field Emission Scanning Electron Microscopy Journal of Microscopy 2020 10.1111/jmi.12905
  21. Allansson , R. , Blakeman , P. , Cooper , B. , Hess , H. , et al. Optimising the Low Temperature Performance and Regeneration Efficiency of the Continuously Regenerating Diesel Particulate Filter (CR-DPF) System SAE Technical Paper 2002-01-0428 2002 https://doi.org/10.4271/2002-01-0428
  22. Johansen , K. , Dahl , S. , Mogensen , G. , Pehrson , S. , et al. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties SAE Technical Paper 2007-01-1921 2007 https://doi.org/10.4271/2007-01-1921
  23. Murphy , M. , Hillenbrand , L. , Trayser , D. , and Wasser , J. Assessment of Diesel Particulate Control—Direct and Catalytic Oxidation SAE Technical Paper 810112 1981 https://doi.org/10.4271/810112
  24. Henning , G.R. Catalytic Oxidation of Graphite J. Inorg. Nucl. Chem. 24 1129 1137 1962 10.1016/0022-1902(62)80258-9
  25. Strzelec , A. , Vander Wal , R. , Thompson , T. , Toops , T. , et al. NO 2 Oxidation Reactivity and Burning Mode of Diesel Particulates Top Catal 59 686– 694 2016 10.1007/s11244-016-0544-8
  26. Castiglioni , C. , Negri , F. , Rigolio , M. , and Zerbi , G. Raman Activation in Disordered Graphites of the A' 1 Symmetry Forbidden k≠0 Phonon: The Origin of the D Line J. Chem. Phys. 115 8 3769 3778 2001 10.1063/1.1381529
  27. Castiglioni , C. , Tommasini , M. , and Zerbi , G. Raman Spectroscopy of Polyconjugated Molecules and Materials: Confinement Effect in One and Two Dimensions Philos Trans A Math Phys Eng Sci. 362 2425– 2459 2004 10.1098/rsta.2004.1448
  28. Ferrari , A. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects Solid State Communications 143 1–2 47 57 2007 10.1016/j.ssc.2007.03.052
  29. Ferrari , A. , and Robertson , J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon Phys. Rev. B 61 20 14095 14107 2000 10.1103/PhysRevB.61.14095
  30. Ghiassi , H. , Jaramillo , I. , Toth , P. , and Lighty , J. Soot Oxidation-Induced Fragmentation: Part 2: Experimental Investigation of the MECHANISM of fragmentation Combust. Flame 163 170 178 2016 10.1016/j.combustflame.2015.09.022
  31. Knight , S. , and William , W. Characterization of Diamond Films by Raman Spectroscopy J. Mater. Res. 4 2 385 393 1989 10.1557/JMR.1989.0385
  32. Tuinstra , F. , and Koenig , J. Raman Spectrum of Graphite J. Chem. Phys. 53 3 1126– 1130 1970 10.1063/1.1674108
  33. Al-Qurashi , K. , and Boehman , A. Impact of Exhaust Gas Recirculation (EGR) on the Oxidative Reactivity of Diesel Engine Soot Combust. Flame 155 4 675 695 2008 10.1016/j.combustflame.2008.06.002
  34. Fang , H. and Lance , M. Influence of Soot Surface Changes on DPF Regeneration SAE Technical Paper 2004-01-3043 https://doi.org/10.4271/2004-01-3043
  35. Toth , P. , Jacobsson , D. , Ek , M. , and Wiinikka , H. Real-Time, In Situ, Atomic Scale Observation of Soot Oxidation Carbon 145 149– 160 2019 10.1016/j.carbon.2019.01.007

Cited By