This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Application of Synthetic Renewable Methanol to Power the Future Propulsion
Technical Paper
2020-01-2151
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
As CO2 emissions from traffic must be reduced and fossil-based traffic fuels need to phase out, bio-based traffic fuels alone cannot meet the future demand due to their restricted availability. Another way to support fossil phase-out is to include synthetic fuels that are produced from circular carbon sources with renewable energy. Several different fuel types have been proposed, while, methanol only requires little processing from raw materials and could be used directly or as a drop-in fuel for some of the current engine fleet. CO2 emissions arising from fuel production are significantly reduced for synthetic renewable methanol compared to the production of fossil gasoline. Methanol has numerous advantages over the currently used fossil fuels with high RON and flame speed in spark-ignition engines as well as high efficiency and low emissions in combustion ignition engines. Feasible options for engine development or upgrading for methanol have been presented separately in the past work but not considering the whole value chain. The results indicate that high concentration methanol blends will increase significantly tank-to-wheel efficiency, lower energy consumption and CO2 emissions, while their volumetric fuel consumption will increase compared to gasoline, due to the low calorific content of methanol. The work visualizes the impact on CO2 emissions for methanol-fueled transport applications and overall suitability for propulsion. For marine sector, successful demonstrations reveal high maturity of engine technology using methanol fuel. This work also highlights further development needs of synthetic renewable methanol to become a sustainable future transport fuel.
Authors
Topic
Citation
Santasalo-Aarnio, A., Nyari, J., Wojcieszyk, M., Kaario, O. et al., "Application of Synthetic Renewable Methanol to Power the Future Propulsion," SAE Technical Paper 2020-01-2151, 2020, https://doi.org/10.4271/2020-01-2151.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 |
Also In
References
- Sims , R. , Schaeffer , R. , Creutzig , F. , Cruz-Núñez , X. , et al. Transport Edenhofer , O. , Pichs-Madruga , R. , Sokona , Y. , Farahani , E. et al. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK Cambridge University Press 2014
- Mayyas , A. , Steward , D. , and Mann , M. The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries Sustain. Mater. Technol. 19 e00087 2019 10.1016/J.SUSMAT.2018.E00087
- International Energy Agency 2019
- Brynolf , S. , Taljegard , M. , Grahn , M. , and Hansson , J. Electrofuels for the transport sector: A review of production costs Renew. Sustain. Energy Rev. 81 1887 1905 2018 10.1016/j.rser.2017.05.288
- Nikolaidis , P. , and Poullikkas , A. A comparative overview of hydrogen production processes Renew. Sustain. Energy Rev. 67 597 611 2017 10.1016/J.RSER.2016.09.044
- Shiva Kumar , S. , and Himabindu , V. Hydrogen production by PEM water electrolysis - A review Mater. Sci. Energy Technol. 2 3 442 454 2019 10.1016/J.MSET.2019.03.002
- Olah , G.A. , Goeppert , A. , and Prakash , G.K.S. Beyond Oil and Gas: The Methanol Economy second Wiley-VCH Weinheim 3527324224 2009
- Brynolf , S. , Fridell , E. , and Andersson , K. Environmental assessment of marine fuels: liquefied natural gas, liquefied biogas, methanol and bio-methanol J. Clean. Prod. 74 86 95 2014 10.1016/j.jclepro.2014.03.052
- Asif , M. , Gao , X. , Lv , H. , Xi , X. , and Dong , P. Catalytic hydrogenation of CO2 from 600 MW supercritical coal power plant to produce methanol: A techno-economic analysis Int. J. Hydrog. Energ. 43 5 2726 2741 2018 10.1016/j.ijhydene.2017.12.086
- Pérez-Fortes , M. , Schöneberger , J.C. , Boulamanti , A. , and Tzimas , E. Methanol synthesis using captured CO 2 as raw material: Techno-economic and environmental assessment Appl. Energ. 161 718 732 2016 10.1016/j.apenergy.2015.07.067
- Verhelst , S. , Turner , J.W. , Sileghem , L. , and Vancoillie , J. Methanol as a fuel for internal combustion engines Prog. Energy Combust. Sci. 70 43 88 2019 10.1016/J.PECS.2018.10.001
- Teboil 2017
- Geely Auto Group http://global.geely.com/2015/05/19/geely-auto-leads-way-with-methanol-vehicle-pilot/
- Stojcevski , T. , Jay , D. , and Vicenzi , L. Operation Experience of World’s First Methanol Engine in a Ferry Installation 28th CIMAC World Congress on Combustion Engine, CIMAC Helsinki 2016
- Pontzen , F. , Liebner , W. , Gronemann , V. , Rothaemel , M. , and Ahlers , B. CO2-based methanol and DME - Efficient technologies for industrial scale production Catal. Today 171 1 242 250 2011 10.1016/j.cattod.2011.04.049
- Bozzano , G. , and Manenti , F. Efficient methanol synthesis: Perspectives, technologies and optimization strategies Prog. Energ. Combust. 56 71 105 2016 10.1016/j.pecs.2016.06.001
- Nyári , J. , Magdeldin , M. , Larmi , M. , Järvinen , M. , and Santasalo-Aarnio , A. Techno-economic barriers of an industrial-scale methanol CCU-plant J. CO2 Util 2020 10.1016/j.jcou.2020.101166
- Ng , K.L. , Chadwick , D. , and Toseland , B.A. Kinetics and modelling of dimethyl ether synthesis from synthesis gas Chem. Eng. Sci. 54 15 3587 3592 1999 10.1016/S0009-2509(98)00514-4
- Methanex 2020
- International Energy Agency 2019
- Bellotti , D. , Rivarolo , M. , Magistri , L. , and Massardo , A.F. Feasibility study of methanol production plant from hydrogen and captured carbon dioxide J. CO2 Util. 21 132 138 2017 10.1016/j.jcou.2017.07.001
- Market Insider https://markets.businessinsider.com/commodities/co2-european-emission-allowances 2020
- Vattenfall , A.B. 2018
- Edwards , R. , Larive , J.-F. , Rickeard , D. , and Weindorf , W. 9789279338885 2014 10.2790/95629
- Kofoed-Wiuff , A. , Dyhr-Mikkelsen , K. , Rueskov , I.S. , Brunak , K. et al. Tracking Nordic Clean Energy Progress Oslo, Norway 2019
- Specht , M. , Staiss , F. , Bandi , A. , and Weimer , T. Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline—Energetic and economic aspects Int. J. Hydrogen Energy 23 5 387 396 1998 10.1016/S0360-3199(97)00077-3
- Kiss , A.A. , Pragt , J.J. , Vos , H.J. , Bargeman , G. , and de Groot , M.T. Novel efficient process for methanol synthesis by CO2 hydrogenation Chem. Eng. J. 284 260 269 2016 10.1016/j.cej.2015.08.101
- Van-Dal , É.S. , and Bouallou , C. Design and simulation of a methanol production plant from CO2 hydrogenation J. Clean. Prod. 57 38 45 2013 10.1016/j.jclepro.2013.06.008
- Szima , S. , and Cormos , C.-C. Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation J. CO2 Util. 24 555 563 2018 10.1016/j.jcou.2018.02.007
- Kaario , O.T. , Vuorinen , V. , Kahila , H. , Im , H.G. , and Larmi , M. The effect of fuel on high velocity evaporating fuel sprays: Large-Eddy simulation of Spray A with various fuels Int. J. Engine Res. 21 1 26 42 2020 10.1177/1468087419854235
- Dong , Y. , Kaario , O. , Ghulam , H. , Ranta , O. et al. High-pressure direct injection of methanol and pilot diesel: a non-premixed dual-fuel engine concept Fuel Accepted 2020
- Ainsalo , A. , Sallinen , R. , Kaario , O. , and Larmi , M. Optical investigation of spray characteristics for light fuel oil, Kerosene, Hexane, Methanol, and Propane At. Sprays 2019 10.1615/AtomizSpr.2019029626
- Pan , W. , Yao , C. , Han , G. , Wei , H. , and Wang , Q. The impact of intake air temperature on performance and exhaust emissions of a diesel methanol dual fuel engine Fuel 2015 10.1016/j.fuel.2015.08.073
- Liu , J. , Yao , A. , and Yao , C. Effects of diesel injection pressure on the performance and emissions of a HD common-rail diesel engine fueled with diesel/methanol dual fuel Fuel 140 192 200 2015 10.1016/j.fuel.2014.09.109
- Wei , H. , Yao , C. , Pan , W. , Han , G. et al. Experimental investigations of the effects of pilot injection on combustion and gaseous emission characteristics of diesel/methanol dual fuel engine Fuel 188 427 441 2017 10.1016/j.fuel.2016.10.056
- Wu , T. , Yao , A. , Yao , C. , Pan , W. et al. Effect of diesel late-injection on combustion and emissions characteristics of diesel/methanol dual fuel engine Fuel 233 317 327 2018 10.1016/j.fuel.2018.06.063
- Yang , B. , Xi , C. , Wei , X. , Zeng , K. , and Lai , M.C. Parametric investigation of natural gas port injection and diesel pilot injection on the combustion and emissions of a turbocharged common rail dual-fuel engine at low load Appl. Energy 143 130 137 2015 10.1016/j.apenergy.2015.01.037
- Yousefi , A. , and Birouk , M. Investigation of natural gas energy fraction and injection timing on the performance and emissions of a dual-fuel engine with pre-combustion chamber under low engine load Appl. Energy 189 492 505 2017 10.1016/j.apenergy.2016.12.046
- Ahmad , Z. , Aryal , J. , Ranta , O. , Kaario , O. , Vuorinen , V. , and Larmi , M. An Optical Characterization of Dual-Fuel Combustion in a Heavy-Duty Diesel Engine WCX World Congress Experience 2018 https://doi.org/10.4271/2018-01-0252
- Abd-Alla , G.H. , Soliman , H.A. , Badr , O.A. , and Abd-Rabbo , M.F. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine Energy Convers. Manag. 42 8 1033 1045 2001 10.1016/S0196-8904(00)00072-8
- Wang , Y. , Wang , H. , Meng , X. , Tian , J. et al. Combustion characteristics of high pressure direct-injected methanol ignited by diesel in a constant volume combustion chamber Fuel 254 115598 2019 10.1016/J.FUEL.2019.06.006
- Jia , Z. , and Denbratt , I. Experimental investigation into the combustion characteristics of a methanol-Diesel heavy duty engine operated in RCCI mode Fuel 2018 10.1016/j.fuel.2018.03.088
- Kroyan , Y. , Wojcieszyk , M. , Larmi , M. , Kaario , O. , and Zenger , K. Modeling the Impact of Alternative Fuel Properties on Light Vehicle Engine Performance and Greenhouse Gases Emissions JSAE/SAE Powertrains, Fuels and Lubricants 2019 10.4271/2019-01-2308
- Kroyan , Y. , Wojcieszyk , M. , Kaario , O. , Larmi , M. , and Zenger , K. Modeling the end-use performance of alternative fuels in light-duty vehicles Energy 2020 10.1016/j.energy.2020.117854
- Pavlovic , J. , Marotta , A. , and Ciuffo , B. CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures Appl. Energy 177 661 670 2016 10.1016/J.APENERGY.2016.05.110
- European Committee for Standardization 2012
- Vancoillie , J. , Demuynck , J. , Sileghem , L. , Van De Ginste , M. , and Verhelst , S. Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline - Engine efficiency study Int. J. Hydrogen Energy 37 12 9914 9924 2012 10.1016/J.IJHYDENE.2012.03.145
- Brusstar , M. , Stuhldreher , M. , Swain , D. , and Pidgeon , W. High Efficiency and Low Emissions from a Port-Injected Engine with Neat Alcohol Fuels SAE Technical Paper 2002-01-2743 2002 https://doi.org/10.4271/2002-01-2743
- Mayer , S. , Sjöholm , J. , Murakami , T. Performance and Emission Results from the MAN B&W LGI Low-Speed Engine Operating on Methanol 28th CIMAC World Congress on Combustion Engine, CIMAC Helsinki 2016
- Waterfront Shipping Company Ltd. 2019
- Coulier , J. and Verhelst , S. Using alcohol fuels in dual fuel operation of compression ignition engines: a review 28th CIMAC World Congress on Combustion Engine, CIMAC Frankfurt, Germany 1 12 2016
- Dierickx , J. , Sileghem , L. , and Verhelst , S. Efficiency and Emissions of a High-Speed Marine Diesel Engine Converted to Dual-Fuel Operation with Methanol Meeting the Future of Combustion Engines, CIMAC Congress, CIMAC World Congress on Combustion Engine, 29, CIMAC Vancouver 2019
- Wermuth , N. , Zelenka , J. , Moeyaert , P. , Aul , A. , and Borgh , M. The HyMethShip concept: Overview, concept development and obstacles for concept application in ocean-going vessel Transport Research Arena 2020: Rethinking Transport. Towards Clean and Inclusive Mobility Helsinki 2020
- Elleuch , A. , Halouani , K. , and Li , Y. Bio-methanol fueled intermediate temperature solid oxide fuel cell: A future solution as component in auxiliary power unit for eco-transportation Mater. Des. 97 331 340 2016 10.1016/J.MATDES.2016.02.060