This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Analysis of Gasoline Surrogate Combustion Chemistry with a Skeletal Mechanism
Technical Paper
2020-01-2004
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Knocking combustion is a major obstacle towards engine downsizing and boosting—popular techniques towards meeting the increasingly stringent emission standards of SI engines. The commercially available gasoline is a mixture of many chemical compounds like paraffins, isoparaffins, olefins and aromatics. Therefore, the modeling of its combustion process is a difficult task. Additionally, the blends of certain compounds exhibit non-linear behavior in comparison to the pure components in terms of knock resistance. These facts require further analysis from the perspective of combustion chemistry. The present work analyses the effects of blending ethanol to FACE-C gasoline. A range of pressures, temperatures, and equivalence ratios has been considered for this purpose. The open source softwares Cantera version 2.4.0 and OpenSMOKE++ Suite have been used for the simulations. Moreover, the present work proposes a skeletal chemical kinetic mechanism for six component gasoline surrogates with 108 species and 1605 reactions. This mechanism has been formed using the open source chemical kinetic reduction code pyMARS. It has been found from the present study that the octane rating and sensitivity increases with the addition of ethanol to gasoline up to 30% volumetric blend. The increase in the octane sensitivity due to ethanol blending can be assessed from the maximum cool flame heat release rate in a 0-D isochoric batch reactor. The chemical kinetic perspective of the changes in octane numbers and sensitivity has been explained in the present analysis with the help of reaction path analysis.
Authors
Topic
Citation
Bhattacharya, A., Kaario, O., Vuorinen, V., Tripathi, R. et al., "Analysis of Gasoline Surrogate Combustion Chemistry with a Skeletal Mechanism," SAE Technical Paper 2020-01-2004, 2020, https://doi.org/10.4271/2020-01-2004.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 |
Also In
References
- Kalghatgi , G.T. Development of Fuel/Engine Systems—the Way Forward to Sustainable Transport Engineering 5 510 518 2019 2019 10.1016/j.eng.2019.01.009
- United Nations https://sustainabledevelopment.un.org/
- Kalghatgi , G.T. The Outlook for Fuels for Internal Combustion Engines Int. J. Engine Res. 15 4 383 398 2014 10.1177/1468087414526189
- Reitz , R.D. Directions in Internal Combustion Engine Research Combust. Flame 160 1 1 8 2013 10.1016/j.combustflame.2012.11.002
- Alagumalai , A. Internal Combustion Engines: Progress and Prospects Renew. Sustain. Energy Rev. 38 561 571 2014 10.1016/j.rser.2014.06.014
- Kalghatgi , G. Is It Really the End of Internal Combustion Engines and Petroleum in Transport? Appl. Energy 225 965 974 2018 10.1016/j.apenergy.2018.05.076
- Pitz , W. , Cernansky , N. , Dryer , F. , Egolfopoulos , F. et al. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels SAE Technical Paper 2007-01-0175 2007 https://doi.org/10.4271/2007-01-0175
- Sarathy , S.M. , Farooq , A. , and Kalghatgi , G.T. Recent Progress in Gasoline Surrogate Fuels Prog. Energy Combust. Sci. 65 67 108 2018 10.1016/j.pecs.2017.09.004
- Bhattacharya , A. , and Datta , A. Effects of Blending 2,5-Dimethylfuran on the Laminar Burning Velocity and Ignition Delay Time of Isooctane/Air Mixture Combust. Theory Model. 23 1 105 126 2018 10.1080/13647830.2018.1492153
- Bhattacharya , A. , Datta , A. , and Wensing , M. Laminar Burning Velocity and Ignition Delay Time for Premixed Isooctane-Air Flames with Syngas Addition Combust. Theory Model. 21 2 228 247 2017 10.1080/13647830.2016.1215533
- Bhattacharya , A. , Banerjee , D.K. , Mamaikin , D. , Datta , A. , and Wensing , M. Effects of Exhaust Gas Dilution on the Laminar Burning Velocity of Real-World Gasoline Fuel Flame in Air Energy and Fuels 29 10 6768 6779 2015 10.1021/acs.energyfuels.5b01299
- Hesse , R. , Beeckmann , J. , Wantz , K. , and Pitsch , H. Laminar Burning Velocity of Market Type Gasoline Surrogates as a Performance Indicator in Internal Combustion Engines SAE Technical Paper 2018-01-1667 2018 https://doi.org/10.4271/2018-01-1667
- Meng , X. , and Meng , Y. Comparison of Primary Sensitive Reactions on Fuel Reactivity between Detailed and Skeletal Mechanisms of Gasoline Surrogate SAE Technical Paper 2018-01-1737 2018 https://doi.org/10.4271/2018-01-1737
- Andrae , J.C.G. Development of a Detailed Kinetic Model for Gasoline Surrogate Fuels Fuel 87 2013 2022 2008 10.1016/j.fuel.2007.09.010
- Esposito , S. , Cai , L. , Günther , M. , Pitsch , H. et al. Experimental Comparison of Combustion and Emission Characteristics between a Market Gasoline and Its Surrogate Combust. Flame 214 306 322 2020 10.1016/j.combustflame.2019.12.025
- Mehl , M. , Pitz , W.J. , Westbrook , C.K. , and Curran , H.J. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions Proc. Combust. Inst. 33 193 200 2011 10.1016/j.proci.2010.05.027
- The CRECK Modeling Group http://creckmodeling.chem.polimi.it/menu-kinetics/menu-kinetics-detailed-mechanisms
- Lu , T. , and Law , C.K. Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations Prog. Energy Combust. Sci. 35 2 192 215 2009 10.1016/j.pecs.2008.10.002
- Pope , S.B. Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion Proc. Combust. Inst. 32 1527 1535 2013 10.1016/j.proci.2012.09.009
- Tomlin , A.S. , Turányi , T. , and Pilling , M.J. Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms Comprehensive Chemical Kinetics 35 293 437 1997 10.1016/S0069-8040(97)80019-2
- Curran , H.J. Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion Proc. Combust. Inst. 37 57 81 2019 10.1016/j.proci.2018.06.054
- Turányi , T. , and Tomlin , A.S. 2014
- Lu , T. , and Law , C.K. A Directed Relation Graph Method for Mechanism Reduction Proc. Combust. Inst. 30 1 1333 1341 2005 10.1016/j.proci.2004.08.145
- Pepiot-Desjardins , P. , and Pitsch , H. An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms Combust. Flame 154 1-2 67 81 2008 10.1016/j.combustflame.2007.10.020
- Sun , W. , Chen , Z. , Gou , X. , and Ju , Y. A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms Combust. Flame 157 1298 1307 2010 10.1016/j.combustflame.2010.03.006
- Niemeyer , K.E. , Sung , C.J. , and Raju , M.P. Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph with Error Propagation and Sensitivity Analysis Combust. Flame 157 1760 1770 2010 10.1016/j.combustflame.2009.12.022
- Niemeyer , K.E. , and Sung , C.J. Mechanism Reduction for Multicomponent Surrogates: A Case Study Using Toluene Reference Fuels Combust. Flame 161 11 2752 2764 2014 10.1016/j.combustflame.2014.05.001
- Luong , M.B. , Luo , Z. , Lu , T. , Chung , S.H. et al. Direct Numerical Simulations of the Ignition of Lean Primary Reference Fuel/Air Mixtures with Temperature Inhomogeneities Combust. Flame 160 10 2038 2047 2013 10.1016/j.combustflame.2013.04.012
- Ra , Y. , and Reitz , R.D. A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations with Primary Reference Fuels Combust. Flame 155 4 713 738 2008 10.1016/j.combustflame.2008.05.002
- Defilippo , A. , Chin , G.T. , and Chen , J.Y. Development and Validation of Reaction Mechanisms for Alcohol-Blended Fuels for IC Engine Applications Combust. Sci. Technol. 185 8 1202 1226 2013 10.1080/00102202.2013.782011
- Chu , H. , Xiang , L. , Nie , X. , Ya , Y. et al. Laminar Burning Velocity and Pollutant Emissions of the Gasoline Components and Its Surrogate Fuels: A Review Fuel 269 117451 2020 10.1016/j.fuel.2020.117451
- Cancino , L.R. , da Silva , A. , De Toni , A.R. , Fikri , M. et al. A Six-Compound, High Performance Gasoline Surrogate for Internal Combustion Engines: Experimental and Numerical Study of Autoignition Using High-Pressure Shock Tubes Fuel 261 116439 2020 10.1016/j.fuel.2019.116439
- Ren , S. , Kokjohn , S.L. , Wang , Z. , Liu , H. et al. A Multi-Component Wide Distillation Fuel (Covering Gasoline, Jet Fuel and Diesel Fuel) Mechanism for Combustion and PAH Prediction Fuel 208 447 468 2017 10.1016/j.fuel.2017.07.009
- Ranzi , E. , Frassoldati , A. , Stagni , A. , Pelucchi , M. et al. Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels Int. J. Chem. Kinet. 46 9 512 542 2014 10.1002/kin.20867
- Ranzi , E. , Cavallotti , C. , Cuoci , A. , Frassoldati , A. et al. New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes Combust. Flame 162 5 1679 1691 2015 10.1016/j.combustflame.2014.11.030
- Bagheri , G. , Ranzi , E. , Pelucchi , M. , Parente , A. et al. Comprehensive Kinetic Study of Combustion Technologies for Low Environmental Impact: MILD and OXY-Fuel Combustion of Methane Combust. Flame 212 142 155 2020 10.1016/j.combustflame.2019.10.014
- Mestas , P. , Clayton , P. , and Niemeyer , K. pyMARS: Automatically Reducing Chemical Kinetic Models in Python J. Open Source Softw. 4 41 1543 2019 10.21105/joss.01543
- pyMARS 1.1.0 https://github.com/Niemeyer-Research-Group/pyMARS
- Zheng , X.L. , Lu , T.F. , and Law , C.K. Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene Proc. Combust. Inst. 31 367 375 2007 10.1016/j.proci.2006.07.182
- Lu , T.F. , and Law , C.K. Strategies for Mechanism Reduction for Large Hydrocarbons: n-Heptane Combust. Flame 154 153 163 2008 10.1016/j.combustflame.2007.11.013
- Niemeyer , K.E. , and Sung , C.J. Reduced Chemistry for a Gasoline Surrogate Valid at Engine-Relevant Conditions Energy and Fuels 29 1172 1185 2015 10.1021/ef5022126
- Dirrenberger , P. , Glaude , P.A. , Bounaceur , R. , Le Gall , H. et al. Laminar Burning Velocity of Gasolines with Addition of Ethanol Fuel 115 162 169 2014 10.1016/j.fuel.2013.07.015
- Goodwin , D.G. , Speth , R.L. , Moffat , H.K. , and Weber , B.W. 2018 10.5281/zenodo.1174508
- Turns , S.R. An Introduction to Combustion: Concepts and Applications, Second Edition McGraw-Hill Publishing Co. 2000 0071086870
- Bhattacharya , A. , and Datta , A. Effects of Nitromethane Addition on the Laminar Burning Velocity and Ignition Delay of Syngas/Air Flames Combust. Sci. Technol. 190 7 1283 1301 2018 10.1080/00102202.2018.1448802
- Bhattacharya , A. , and Basu , S. An Investigation into the Heat Release and Emissions from Counterflow Diffusion Flames of Methane/Dimethyl Ether/Hydrogen Blends in Air Int. J. Hydrogen Energy 44 39 22328 22346 2019 10.1016/j.ijhydene.2019.06.190
- Konnov , A.A. , Mohammad , A. , Kishore , V.R. , Kim , N.I. et al. A Comprehensive Review of Measurements and Data Analysis of Laminar Burning Velocities for Various Fuel+Air Mixtures Prog. Energy Combust. Sci. 68 197 267 2018 10.1016/j.pecs.2018.05.003
- Egolfopoulos , F.N. , Hansen , N. , Ju , Y. , Kohse-Höinghaus , K. et al. Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry Prog. Energy Combust. Sci. 43 36 67 2014 10.1016/j.pecs.2014.04.004
- De Goey , L.P.H. , Van Maaren , A. , and Quax , R.M. Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner Combust. Sci. Technol. 92 1-3 201 207 1993 10.1080/00102209308907668
- Sileghem , L. , Alekseev , V.A. , Vancoillie , J. , Nilsson , E.J.K. et al. Laminar Burning Velocities of Primary Reference Fuels and Simple Alcohols Fuel 115 32 40 2014 10.1016/j.fuel.2013.07.004
- Mannaa , O.A. , Mansour , M.S. , Roberts , W.L. , and Chung , S.H. Influence of Ethanol and Exhaust Gas Recirculation on Laminar Burning Behaviors of Fuels for Advanced Combustion Engines (FACE-C) Gasoline and Its Surrogate Energy and Fuels 31 12 14104 14115 2017 10.1021/acs.energyfuels.7b00935
- Chen , Z. On the Accuracy of Laminar Flame Speeds Measured from Outwardly Propagating Spherical Flames: Methane/Air at Normal Temperature and Pressure Combust. Flame 162 2442 2453 2015 10.1016/j.combustflame.2015.02.012
- Demirbas , A. Competitive Liquid Biofuels from Biomass Appl. Energy 88 1 17 28 2011 10.1016/j.apenergy.2010.07.016
- Stein , R.A. , Anderson , J.E. , and Wallington , T.J. An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions SAE Int. J. Engines 6 1 470 487 2013 10.4271/2013-01-1635
- Nakata , K. , Utsumi , S. , Ota , A. , Kawatake , K. et al. The Effect of Ethanol Fuel on a Spark Ignition Engine SAE Technical Paper 2006-01-3380 2006 https://doi.org/10.4271/2006-01-3380
- Badra , J. , AlRamadan , A.S. , and Sarathy , S.M. Optimization of the Octane Response of Gasoline/Ethanol Blends Appl. Energy 203 778 793 2017 10.1016/j.apenergy.2017.06.084
- CloudFlame https://cloudflame.kaust.edu.sa/
- Poinsot , T. , Veynante , D. , and Candel , S. Quenching Processes and Premixed Turbulent Combustion Diagrams J. Fluid Mech. 228 561 606 1991 10.1017/S0022112091002823
- Sarathy , S.M. , Oßwald , P. , Hansen , N. , and Kohse-Höinghaus , K. Alcohol Combustion Chemistry Prog. Energy Combust. Sci. 44 40 102 2014 10.1016/j.pecs.2014.04.003
- Curran , H.J. , Gaffuri , P. , Pitz , W.J. , and Westbrook , C.K. A Comprehensive Modeling Study of Iso-Octane Oxidation Combust. Flame 129 3 253 280 2002 10.1016/S0010-2180(01)00373-X
- Singh , E. , Badra , J. , Mehl , M. , and Sarathy , S.M. Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures Energy and Fuels 31 2 1945 1960 2017 10.1021/acs.energyfuels.6b02659
- Kim , D. , Westbrook , C.K. , and Violi , A. Two-Stage Ignition Behavior and Octane Sensitivity of Toluene Reference Fuels as Gasoline Surrogate Combust. Flame 210 100 113 2019 10.1016/j.combustflame.2019.08.019
- Szybist , J.P. , and Splitter , D.A. Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines Combust. Flame 177 49 66 2017 10.1016/j.combustflame.2016.12.002
- Mehl , M. , Faravelli , T. , Giavazzi , F. , Ranzi , E. et al. Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity Energy and Fuels 20 2391 2398 2006 10.1021/ef060339s
- Cuoci , A. , Frassoldati , A. , Faravelli , T. , and Ranzi , E. OpenSMOKE++: An Object-Oriented Framework for the Numerical Modeling of Reactive Systems with Detailed Kinetic Mechanisms Comput. Phys. Commun. 192 237 264 2015 10.1016/j.cpc.2015.02.014
- Cuoci , A. , Frassoldati , A. , Faravelli , T. , and Ranzi , E. Numerical Modeling of Laminar Flames with Detailed Kinetics Based on the Operator-Splitting Method Energy and Fuels 27 12 7730 7753 2013 10.1021/ef4016334