This content is not included in your SAE MOBILUS subscription, or you are not logged in.
Analysis of Gasoline Surrogate Combustion Chemistry with a Skeletal Mechanism
Technical Paper
2020-01-2004
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Knocking combustion is a major obstacle towards engine downsizing and boosting—popular techniques towards meeting the increasingly stringent emission standards of SI engines. The commercially available gasoline is a mixture of many chemical compounds like paraffins, isoparaffins, olefins and aromatics. Therefore, the modeling of its combustion process is a difficult task. Additionally, the blends of certain compounds exhibit non-linear behavior in comparison to the pure components in terms of knock resistance. These facts require further analysis from the perspective of combustion chemistry. The present work analyses the effects of blending ethanol to FACE-C gasoline. A range of pressures, temperatures, and equivalence ratios has been considered for this purpose. The open source softwares Cantera version 2.4.0 and OpenSMOKE++ Suite have been used for the simulations. Moreover, the present work proposes a skeletal chemical kinetic mechanism for six component gasoline surrogates with 108 species and 1605 reactions. This mechanism has been formed using the open source chemical kinetic reduction code pyMARS. It has been found from the present study that the octane rating and sensitivity increases with the addition of ethanol to gasoline up to 30% volumetric blend. The increase in the octane sensitivity due to ethanol blending can be assessed from the maximum cool flame heat release rate in a 0-D isochoric batch reactor. The chemical kinetic perspective of the changes in octane numbers and sensitivity has been explained in the present analysis with the help of reaction path analysis.
Authors
Topic
Citation
Bhattacharya, A., Kaario, O., Vuorinen, V., Tripathi, R. et al., "Analysis of Gasoline Surrogate Combustion Chemistry with a Skeletal Mechanism," SAE Technical Paper 2020-01-2004, 2020, https://doi.org/10.4271/2020-01-2004.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
[Unnamed Dataset 1] |
Also In
References
- Kalghatgi, G.T. , “Development of Fuel/Engine Systems—the Way Forward to Sustainable Transport,” Engineering 5:510-518, 2019, 2019, doi:10.1016/j.eng.2019.01.009.
- United Nations , “Sustainable Development Goals,” https://sustainabledevelopment.un.org/, accessed April 2020.
- Kalghatgi, G.T. , “The Outlook for Fuels for Internal Combustion Engines,” Int. J. Engine Res. 15(4):383-398, 2014, doi:10.1177/1468087414526189.
- Reitz, R.D. , “Directions in Internal Combustion Engine Research,” Combust. Flame 160(1):1-8, 2013, doi:10.1016/j.combustflame.2012.11.002.
- Alagumalai, A. , “Internal Combustion Engines: Progress and Prospects,” Renew. Sustain. Energy Rev. 38:561-571, 2014, doi:10.1016/j.rser.2014.06.014.
- Kalghatgi, G. , “Is It Really the End of Internal Combustion Engines and Petroleum in Transport?” Appl. Energy 225:965-974, 2018, doi:10.1016/j.apenergy.2018.05.076.
- Pitz, W., Cernansky, N., Dryer, F., Egolfopoulos, F. et al. , “Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels,” SAE Technical Paper 2007-01-0175, 2007, https://doi.org/10.4271/2007-01-0175.
- Sarathy, S.M., Farooq, A., and Kalghatgi, G.T. , “Recent Progress in Gasoline Surrogate Fuels,” Prog. Energy Combust. Sci. 65:67-108, 2018, doi:10.1016/j.pecs.2017.09.004.
- Bhattacharya, A., and Datta, A. , “Effects of Blending 2,5-Dimethylfuran on the Laminar Burning Velocity and Ignition Delay Time of Isooctane/Air Mixture,” Combust. Theory Model. 23(1):105-126, 2018, doi:10.1080/13647830.2018.1492153.
- Bhattacharya, A., Datta, A., and Wensing, M. , “Laminar Burning Velocity and Ignition Delay Time for Premixed Isooctane-Air Flames with Syngas Addition,” Combust. Theory Model. 21(2):228-247, 2017, doi:10.1080/13647830.2016.1215533.
- Bhattacharya, A., Banerjee, D.K., Mamaikin, D., Datta, A., and Wensing, M. , “Effects of Exhaust Gas Dilution on the Laminar Burning Velocity of Real-World Gasoline Fuel Flame in Air,” Energy and Fuels 29(10):6768-6779, 2015, doi:10.1021/acs.energyfuels.5b01299.
- Hesse, R., Beeckmann, J., Wantz, K., and Pitsch, H. , “Laminar Burning Velocity of Market Type Gasoline Surrogates as a Performance Indicator in Internal Combustion Engines,” SAE Technical Paper 2018-01-1667, 2018, https://doi.org/10.4271/2018-01-1667.
- Meng, X., and Meng, Y. , “Comparison of Primary Sensitive Reactions on Fuel Reactivity between Detailed and Skeletal Mechanisms of Gasoline Surrogate,” SAE Technical Paper 2018-01-1737, 2018, https://doi.org/10.4271/2018-01-1737.
- Andrae, J.C.G. , “Development of a Detailed Kinetic Model for Gasoline Surrogate Fuels,” Fuel 87:2013-2022, 2008, doi:10.1016/j.fuel.2007.09.010.
- Esposito, S., Cai, L., Günther, M., Pitsch, H. et al. , “Experimental Comparison of Combustion and Emission Characteristics between a Market Gasoline and Its Surrogate,” Combust. Flame 214:306-322, 2020, doi:10.1016/j.combustflame.2019.12.025.
- Mehl, M., Pitz, W.J., Westbrook, C.K., and Curran, H.J. , “Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions,” Proc. Combust. Inst. 33:193-200, 2011, doi:10.1016/j.proci.2010.05.027.
- The CRECK Modeling Group , “List of mechanisms,” http://creckmodeling.chem.polimi.it/menu-kinetics/menu-kinetics-detailed-mechanisms, accessed April 2020.
- Lu, T., and Law, C.K. , “Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations,” Prog. Energy Combust. Sci. 35(2):192-215, 2009, doi:10.1016/j.pecs.2008.10.002.
- Pope, S.B. , “Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion,” Proc. Combust. Inst. 32:1527-1535, 2013, doi:10.1016/j.proci.2012.09.009.
- Tomlin, A.S., Turányi, T., and Pilling, M.J. , “Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms,” Comprehensive Chemical Kinetics 35:293-437, 1997, doi:10.1016/S0069-8040(97)80019-2.
- Curran, H.J. , “Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion,” Proc. Combust. Inst. 37:57-81, 2019, doi:10.1016/j.proci.2018.06.054.
- Turányi, T., and Tomlin, A.S. , 2014, “Analysis of Kinetic Reaction Mechanisms,” (Springer-Verlag Berlin Heidelberg, 2014), doi:10.1007/978-3-662-44562-4.
- Lu, T., and Law, C.K. , “A Directed Relation Graph Method for Mechanism Reduction,” Proc. Combust. Inst. 30(1):1333-1341, 2005, doi:10.1016/j.proci.2004.08.145.
- Pepiot-Desjardins, P., and Pitsch, H. , “An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms,” Combust. Flame 154(1-2):67-81, 2008, doi:10.1016/j.combustflame.2007.10.020.
- Sun, W., Chen, Z., Gou, X., and Ju, Y. , “A Path Flux Analysis Method for the Reduction of Detailed Chemical Kinetic Mechanisms,” Combust. Flame 157:1298-1307, 2010, doi:10.1016/j.combustflame.2010.03.006.
- Niemeyer, K.E., Sung, C.J., and Raju, M.P. , “Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph with Error Propagation and Sensitivity Analysis,” Combust. Flame 157:1760-1770, 2010, doi:10.1016/j.combustflame.2009.12.022.
- Niemeyer, K.E., and Sung, C.J. , “Mechanism Reduction for Multicomponent Surrogates: A Case Study Using Toluene Reference Fuels,” Combust. Flame 161(11):2752-2764, 2014, doi:10.1016/j.combustflame.2014.05.001.
- Luong, M.B., Luo, Z., Lu, T., Chung, S.H. et al. , “Direct Numerical Simulations of the Ignition of Lean Primary Reference Fuel/Air Mixtures with Temperature Inhomogeneities,” Combust. Flame 160(10):2038-2047, 2013, doi:10.1016/j.combustflame.2013.04.012.
- Ra, Y., and Reitz, R.D. , “A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations with Primary Reference Fuels,” Combust. Flame 155(4):713-738, 2008, doi:10.1016/j.combustflame.2008.05.002.
- Defilippo, A., Chin, G.T., and Chen, J.Y. , “Development and Validation of Reaction Mechanisms for Alcohol-Blended Fuels for IC Engine Applications,” Combust. Sci. Technol. 185(8):1202-1226, 2013, doi:10.1080/00102202.2013.782011.
- Chu, H., Xiang, L., Nie, X., Ya, Y. et al. , “Laminar Burning Velocity and Pollutant Emissions of the Gasoline Components and Its Surrogate Fuels: A Review,” Fuel 269:117451, 2020, doi:10.1016/j.fuel.2020.117451.
- Cancino, L.R., da Silva, A., De Toni, A.R., Fikri, M. et al. , “A Six-Compound, High Performance Gasoline Surrogate for Internal Combustion Engines: Experimental and Numerical Study of Autoignition Using High-Pressure Shock Tubes,” Fuel 261: 116439, 2020, doi:10.1016/j.fuel.2019.116439.
- Ren, S., Kokjohn, S.L., Wang, Z., Liu, H. et al. , “A Multi-Component Wide Distillation Fuel (Covering Gasoline, Jet Fuel and Diesel Fuel) Mechanism for Combustion and PAH Prediction,” Fuel 208:447-468, 2017, doi:10.1016/j.fuel.2017.07.009.
- Ranzi, E., Frassoldati, A., Stagni, A., Pelucchi, M. et al. , “Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels,” Int. J. Chem. Kinet. 46(9):512-542, 2014, doi:10.1002/kin.20867.
- Ranzi, E., Cavallotti, C., Cuoci, A., Frassoldati, A. et al. , “New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-Alkanes,” Combust. Flame 162(5):1679-1691, 2015, doi:10.1016/j.combustflame.2014.11.030.
- Bagheri, G., Ranzi, E., Pelucchi, M., Parente, A. et al. , “Comprehensive Kinetic Study of Combustion Technologies for Low Environmental Impact: MILD and OXY-Fuel Combustion of Methane,” Combust. Flame 212:142-155, 2020, doi:10.1016/j.combustflame.2019.10.014.
- Mestas, P., Clayton, P., and Niemeyer, K. , “pyMARS: Automatically Reducing Chemical Kinetic Models in Python,” J. Open Source Softw. 4(41):1543, 2019, doi:10.21105/joss.01543.
- pyMARS 1.1.0 , https://github.com/Niemeyer-Research-Group/pyMARS, accessed April 2020.
- Zheng, X.L., Lu, T.F., and Law, C.K. , “Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene,” Proc. Combust. Inst. 31:367-375, 2007, doi:10.1016/j.proci.2006.07.182.
- Lu, T.F., and Law, C.K. , “Strategies for Mechanism Reduction for Large Hydrocarbons: n-Heptane,” Combust. Flame 154:153-163, 2008, doi:10.1016/j.combustflame.2007.11.013.
- Niemeyer, K.E., and Sung, C.J. , “Reduced Chemistry for a Gasoline Surrogate Valid at Engine-Relevant Conditions,” Energy and Fuels 29:1172-1185, 2015, doi:10.1021/ef5022126.
- Dirrenberger, P., Glaude, P.A., Bounaceur, R., Le Gall, H. et al. , “Laminar Burning Velocity of Gasolines with Addition of Ethanol,” Fuel 115: 162-169, 2014, doi:10.1016/j.fuel.2013.07.015.
- Goodwin, D.G., Speth, R.L., Moffat, H.K., and Weber, B.W. , “Cantera: An Object-Oriented Software Toolkit For Chemical Kinetics, Thermo- Dynamics, and Transport Processes,” Version 2.4.0, 2018, doi:10.5281/zenodo.1174508.
- Turns, S.R. , An Introduction to Combustion: Concepts and Applications, Second Edition (McGraw-Hill Publishing Co., 2000). ISBN:0071086870.
- Bhattacharya, A., and Datta, A. , “Effects of Nitromethane Addition on the Laminar Burning Velocity and Ignition Delay of Syngas/Air Flames,” Combust. Sci. Technol. 190(7):1283-1301, 2018, doi:10.1080/00102202.2018.1448802.
- Bhattacharya, A., and Basu, S. , “An Investigation into the Heat Release and Emissions from Counterflow Diffusion Flames of Methane/Dimethyl Ether/Hydrogen Blends in Air,” Int. J. Hydrogen Energy 44(39):22328-22346, 2019, doi:10.1016/j.ijhydene.2019.06.190.
- Konnov, A.A., Mohammad, A., Kishore, V.R., Kim, N.I. et al. , “A Comprehensive Review of Measurements and Data Analysis of Laminar Burning Velocities for Various Fuel+Air Mixtures,” Prog. Energy Combust. Sci. 68:197-267, 2018, doi:10.1016/j.pecs.2018.05.003.
- Egolfopoulos, F.N., Hansen, N., Ju, Y., Kohse-Höinghaus, K. et al. , “Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry,” Prog. Energy Combust. Sci. 43:36-67, 2014, doi:10.1016/j.pecs.2014.04.004.
- De Goey, L.P.H., Van Maaren, A., and Quax, R.M. , “Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner,” Combust. Sci. Technol. 92(1-3):201-207, 1993, doi:10.1080/00102209308907668.
- Sileghem, L., Alekseev, V.A., Vancoillie, J., Nilsson, E.J.K. et al. , “Laminar Burning Velocities of Primary Reference Fuels and Simple Alcohols,” Fuel 115:32-40, 2014, doi:10.1016/j.fuel.2013.07.004.
- Mannaa, O.A., Mansour, M.S., Roberts, W.L., and Chung, S.H. , “Influence of Ethanol and Exhaust Gas Recirculation on Laminar Burning Behaviors of Fuels for Advanced Combustion Engines (FACE-C) Gasoline and Its Surrogate,” Energy and Fuels 31(12):14104-14115, 2017, doi:10.1021/acs.energyfuels.7b00935.
- Chen, Z. , “On the Accuracy of Laminar Flame Speeds Measured from Outwardly Propagating Spherical Flames: Methane/Air at Normal Temperature and Pressure,” Combust. Flame 162:2442-2453, 2015, doi:10.1016/j.combustflame.2015.02.012.
- Demirbas, A. , “Competitive Liquid Biofuels from Biomass,” Appl. Energy 88(1):17-28, 2011, doi:10.1016/j.apenergy.2010.07.016.
- Stein, R.A., Anderson, J.E., and Wallington, T.J. , “An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions,” SAE Int. J. Engines 6(1):470-487, 2013, doi:10.4271/2013-01-1635.
- Nakata, K., Utsumi, S., Ota, A., Kawatake, K. et al. , “The Effect of Ethanol Fuel on a Spark Ignition Engine,” SAE Technical Paper 2006-01-3380, 2006, https://doi.org/10.4271/2006-01-3380.
- Badra, J., AlRamadan, A.S., and Sarathy, S.M. , “Optimization of the Octane Response of Gasoline/Ethanol Blends,” Appl. Energy 203:778-793, 2017, doi:10.1016/j.apenergy.2017.06.084.
- CloudFlame , “Aramco TPRF Model Calculator,” https://cloudflame.kaust.edu.sa/, accessed April 2020.
- Poinsot, T., Veynante, D., and Candel, S. , “Quenching Processes and Premixed Turbulent Combustion Diagrams,” J. Fluid Mech. 228:561-606, 1991, doi:10.1017/S0022112091002823.
- Sarathy, S.M., Oßwald, P., Hansen, N., and Kohse-Höinghaus, K. , “Alcohol Combustion Chemistry,” Prog. Energy Combust. Sci. 44:40-102, 2014, doi:10.1016/j.pecs.2014.04.003.
- Curran, H.J., Gaffuri, P., Pitz, W.J., and Westbrook, C.K. , “A Comprehensive Modeling Study of Iso-Octane Oxidation,” Combust. Flame 129(3):253-280, 2002, doi:10.1016/S0010-2180(01)00373-X.
- Singh, E., Badra, J., Mehl, M., and Sarathy, S.M. , “Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures,” Energy and Fuels 31(2):1945-1960, 2017, doi:10.1021/acs.energyfuels.6b02659.
- Kim, D., Westbrook, C.K., and Violi, A. , “Two-Stage Ignition Behavior and Octane Sensitivity of Toluene Reference Fuels as Gasoline Surrogate,” Combust. Flame 210:100-113, 2019, doi:10.1016/j.combustflame.2019.08.019.
- Szybist, J.P., and Splitter, D.A. , “Pressure and Temperature Effects on Fuels with Varying Octane Sensitivity at High Load in SI Engines,” Combust. Flame 177:49-66, 2017, doi:10.1016/j.combustflame.2016.12.002.
- Mehl, M., Faravelli, T., Giavazzi, F., Ranzi, E. et al. , “Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity,” Energy and Fuels 20:2391-2398, 2006, doi:10.1021/ef060339s.
- Cuoci, A., Frassoldati, A., Faravelli, T., and Ranzi, E. , “OpenSMOKE++: An Object-Oriented Framework for the Numerical Modeling of Reactive Systems with Detailed Kinetic Mechanisms,” Comput. Phys. Commun. 192:237-264, 2015, doi:10.1016/j.cpc.2015.02.014.
- Cuoci, A., Frassoldati, A., Faravelli, T., and Ranzi, E. , “Numerical Modeling of Laminar Flames with Detailed Kinetics Based on the Operator-Splitting Method,” Energy and Fuels 27(12):7730-7753, 2013, doi:10.1021/ef4016334.