This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Prediction of Acoustic Emissions of Turbocharger Bearings
Technical Paper
2020-01-1504
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Turbochargers are progressively used in modern automotive engines to enhance engine performance and reduce energy loss and adverse emissions. Use of turbochargers along with other modern technologies has enabled development of significantly downsized internal combustion engines. However, turbochargers are major sources of acoustic emissions in modern automobiles. Their acoustics has a distinctive signature, originating from fluid-structure interactions. The bearing systems of turbochargers also constitute an important noise source. In this case, the acoustic emissions can mainly be attributed to hydrodynamic pressure fluctuations of the lubricant film. The developed analytical model determines the lubricant pressure distribution in the floating journal bearings used mainly in the modern turbocharges. This allows for an estimation of acoustic emissions. The use of such an analytical approach is computationally efficient when compared with full numerical analysis approaches, whilst also providing reliable predictions. The results from the developed analytical model are used to determine the power loss as well as sound pressure levels generated in the turbocharger bearings due to oil flow which can be correlated with the acoustic emissions of turbochargers.
Authors
Topic
Citation
Dolatabadi, N., Rahmani, R., and Rahnejat, H., "Prediction of Acoustic Emissions of Turbocharger Bearings," SAE Technical Paper 2020-01-1504, 2020, https://doi.org/10.4271/2020-01-1504.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Bernhauser , L. , Steinwender , L. , and Neumayer , R. Efficient Run-Up Simulations for the Investigation of Acoustically Relevant Vibrations of Turbocharger Structures with Floating-Ring Bearings Proceedings of the DAGA Aachen, Germany 2016
- Kirk , R.G. , and Alsaeed , A.A. Stability Analysis of a High-Speed Automotive Turbocharger Tribology Transactions 50 3 427 434 2007
- Tian , L. , Wang , W.J. , and Peng , Z.J. Dynamic Behaviours of a Full Floating Ring Bearing Supported Turbocharger Rotor with Engine Excitation Journal of Sound and Vibration 330 4851 4874 2011
- Schweizer , B. , and Sievert , M. Nonlinear Oscillations of Automotive Turbocharger Turbines Journal of Sound and Vibration 321 3-5 955 975 2009
- San Andres , L. , Rivadeneira , J.C. , Chinta , M. , Gjika , K. et al. Nonlinear Rotordynamics of Automotive Turbochargers: Predictions and Comparisons to Test Data Journal of Engineering for Gas Turbines and Power 129 2 488 493 2007
- Brouwer , M.D. , Sadeghi , F. , Lancaster , C. , Archer , J. et al. Whirl and Friction Characteristics of High Speed Floating Ring and Ball Bearing Turbochargers Journal of Tribology 135 4 041102 2013
- Smolik , L. , Hajzman , M. , and Byrtus , M. Investigation of Bearing Clearance Effects in Dynamics of Turbochargers International Journal of Mechanical Sciences 127 62 72 2017
- Koutsovasilis , P. , Driot , N. , Lu , D. , and Schweizer , B. Quantification of Sub-Synchronous Vibrations for Turbocharger Rotors with Full-Floating Ring Bearings Archive of Applied Mechanics 85 481 502 2015
- Gohar , R. , and Rahnejat Fundamentals of Tribology London Imperial College Press 2008
- Mokhrtar , M.O.A. Floating Ring Journal Bearings: Theory, Design and Optimization Tribology International. 14 2 113 119 1981
- Rho , B.H. , and Kim , K.W. Acoustical Properties of Hydrodynamic Journal Bearings Tribology International 36 61 66 2003
- Mohammadpour , M. , Rahmani , R. , and Rahnejat , H. Effect of Cylinder Deactivation on the Tribo-Dynamics and Acoustic Emission of Overlay Big End Bearings Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 228 2 138 151 2014
- Cameron , A. The Principles of Lubrication John Wiley 1966