This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning
Technical Paper
2020-01-1313
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
In this study, the combustion system of a light-duty compression ignition engine running on a market gasoline fuel with Research Octane Number (RON) of 91 was optimized using computational fluid dynamics (CFD) and Machine Learning (ML). This work was focused on optimizing the piston bowl geometry at two compression ratios (CR) (17 and 18:1) and this exercise was carried out at full-load conditions (20 bar indicated mean effective pressure, IMEP). First, a limited manual piston design optimization was performed for CR 17:1, where a couple of pistons were designed and tested. Thereafter, a CFD design of experiments (DoE) optimization was performed where CAESES, a commercial software tool, was used to automatically perturb key bowl design parameters and CONVERGE software was utilized to perform the CFD simulations. At each compression ratio, 128 piston bowl designs were evaluated. Subsequently, a Machine Learning-Grid Gradient Algorithm (ML-GGA) approach was developed to further optimize the piston bowl design. This extensive optimization exercise yielded significant improvements in the engine performance and emissions compared to the baseline piston bowl designs. Up to 15% savings in indicated specific fuel consumption (ISFC) were obtained. Similarly, the optimized piston bowl geometries produced significantly lower emissions compared to the baseline. Emissions reductions up to 90% were obtained from this optimization exercise. The performances of the optimized piston bowl geometries were further validated at different operating conditions at the high-load point and at part-load conditions (6 bar IMEP) and compared with those of the baseline designs. The dependence of the engine performance on the piston bowl geometry at part-loads was lower than that at high-loads because injections normally occurred earlier (-60 to -20 CAD after top dead center (aTDC)) where minimal interactions between the spray and piston were anticipated. The interactions between late injections (-3 to 3 CAD aTDC) and piston geometry at high-loads significantly affected, fuel-air mixing, droplet breakup, combustion and emissions. It was also observed that heat losses, dictated by the interactions between the flame and piston surface, significantly affected the performance of the engine.
Authors
- Yuanjiang Pei - Aramco Research Center
- Carsten Futterer - Friendship Systems
- Mattia Brenner - Friendship Systems
- Pinaki Pal - Argonne National Laboratory
- Sibendu Som - Argonne National Laboratory
- Fethi khaled - King Abdullah University of Science & Technology
- Aamir Farooq - King Abdullah University of Science & Technology
- Jihad Badra - Saudi Aramco
- Jaeheon Sim - Saudi Aramco
- Yoann Viollet - Saudi Aramco
- Junseok Chang - Saudi Aramco
Citation
Badra, J., khaled, F., Sim, J., Pei, Y. et al., "Combustion System Optimization of a Light-Duty GCI Engine Using CFD and Machine Learning," SAE Technical Paper 2020-01-1313, 2020, https://doi.org/10.4271/2020-01-1313.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 | ||
Unnamed Dataset 4 | ||
Unnamed Dataset 5 | ||
Unnamed Dataset 6 | ||
Unnamed Dataset 7 | ||
Unnamed Dataset 8 | ||
Unnamed Dataset 9 | ||
Unnamed Dataset 10 | ||
Unnamed Dataset 11 | ||
Unnamed Dataset 12 |
Also In
References
- U.S. Energy Information Administration (EIA) International Energy Outlook 2018 Washington, DC 2018 20585
- Kalghatgi , G.T. The Outlook for Fuels for Internal Combustion Engines Int. J. Engine Res. 2014 10.1177/1468087414526189
- Badra , J. , Sim , J. , Viollet , Y. , Zhang , Y. et al. CFD Guided Gasoline Compression Ignition Engine Calibration Proceedings of the 2017 ASME Internal Combustion Engine Division Fall Technical Conference, 2017 Seattle, Washington, USA 10.1115/ICEF2017-3583
- Zhang , Y. , Pei , Y. , Engineer , N. , Cho , K. et al. CFD-Guided Combustion Strategy Development for a Higher Reactivity Gasoline in a Light-Duty Gasoline Compression Ignition Engine SAE Technical Paper 2017-01-0740 2017 https://doi.org/10.4271/2017-01-0740
- Pei , Y. , Pal , P. , Zhang , Y. , Traver , M. et al. CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer SAE Int. J. Adv. & Curr. Prac. in Mobility 1 1 166 179 2019 https://doi.org/10.4271/2019-01-0001
- Cho , K. , Zhang , Y. , and Cleary , D.J. Investigation of fuel Effects on Combustion Characteristics of Partially Premixed Compression Ignition (PPCI) Combustion Mode at Part-Load Operations SAE Technical Paper 2018-01-0665 2018 https://doi.org/10.4271/2018-01-0665
- Badra , J. , Elwardany , A. , Sim , J. , Viollet , Y. et al. Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion SAE Technical Paper 2016-01-0762 2016 https://doi.org/10.4271/2016-01-0762
- Badra , J. , Khaled , F. , Tang , M. , Pei , Y. et al. Engine Combustion System Optimization Using CFD and Machine Learning: A Methodological Approach Proceedings of the ASME 2019 Internal Combustion Engine Division Fall Technical Conference Chicago, IL, USA 2019 10.1115/ICEF2019-7238
- Atef , N. , Badra , J. , Jaasim , M. , Im , H.G. et al. Numerical Investigation of Injector Geometry Effects on Fuel Stratification in a GCI Engine Fuel 214 580 589 2018 https://doi.org/10.1016/j.fuel.2017.11.036
- Badra , J.A. , Sim , J. , Elwardany , A. , Jaasim , M. et al. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels J. Energy Resour. Technol. 138 5 052202 052202 2016 10.1115/1.4032622
- Badra , J. , Viollet , Y. , Elwardany , A. , Im , H.G. et al. Physical and chemical effects of low octane gasoline fuels on compression ignition combustion Appl. Energy 183 1197 1208 2016 https://doi.org/10.1016/j.apenergy.2016.09.060
- Sim , J. , Badra , J. , Elwardany , A. , and Im , H.G. Spray Modeling for Outwardly-Opening Hollow-Cone Injector SAE Technical Paper 2016-01-0844 2016 https://doi.org/10.4271/2016-01-0844
- Badra , J. , Bakor , R. , AlRamadan , A.S. , Almansour , M. et al. Standardized Gasoline Compression Ignition Fuels Matrix SAE Technical Paper 2018-01-0925 2018 https://doi.org/10.4271/2018-01-0925
- Chang , J. , Kalghatgi , G. , Amer , A. , and Viollet , Y. Enabling High Efficiency Direct Injection Engine with Naphtha Fuel through Partially Premixed Charge Compression Ignition Combustion SAE Technical Paper 2012-01-0677 2012 https://doi.org/10.4271/2012-01-0677
- Chang , J. , Viollet , Y. , Amer , A. , and Kalghatgi , G. Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion with Naphtha Fuel SAE Technical Paper 2013-01-2701 2013 https://doi.org/doi:10.4271/2012-01-0677
- Pei , Y. , Zhang , Y. , Kumar , P. , Traver , M. et al. CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel SAE Int. J. Commer. Veh. 10 2 532 546 2017 https://doi.org/10.4271/2017-01-0550
- Montgomery , D.T. and Reitz , R.D. Optimization of Heavy-Duty Diesel Engine Operating Parameters Using A Response Surface Method SAE Technical Paper 2000-01-1962 2000 https://doi.org/10.42741/2000-01-1962
- Probst , D.M. , Senecal , P.K. , Qian , P.Z. , Xu , M.X. et al. Optimization and Uncertainty Analysis of a Diesel Engine Operating Point Using CFD ASME 2016 Internal Combustion Engine Division Fall Technical Conference 2016 10.1115/icef2016-9345
- Zhang , Q. , Ogren , R.M. , and Kong , S.-C. A Comparative Study of Biodiesel Engine Performance Optimization Using Enhanced Hybrid PSO-GA and Basic GA Appl. Energy 165 676 684 2016 https://doi.org/10.1016/j.apenergy.2015.12.044
- Wickman , D.D. , Senecal , P.K. , and Reitz , R.D. Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling SAE Technical Paper 2001-01-0547 2001 https://doi.org/10.4271/2001-01-0547
- Costa , M. , Bianchi , G.M. , Forte , C. , and Cazzoli , G. A Numerical Methodology for the Multi-objective Optimization of the DI Diesel Engine Combustion Energy Procedia 45 711 720 2014 https://doi.org/10.1016/j.egypro.2014.01.076
- Moiz , A.A. , Pal , P. , Probst , D. , Pei , Y. et al. A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing SAE Int. J. Commer. Veh. 11 5 291 306 2018 https://doi.org/10.4271/2018-01-0190
- Won , H. , Bouet , A. , Manente , V. , Kermani , J. et al. Potential of GCI Technology - Higher Reactivity Gasoline Fuel to Reduce CO2 Footprint of a Euro6d Compliant Passenger Vehicle 40th International Vienna Motor Symposium Vienna, Austria 2019
- Yamaji , K. , Tomimatsu , M. , Takagi , I. , Higuchi , A. et al. New 2.0L I4 Gasoline Direct Injection Engine with Toyota New Global Architecture Concept SAE Technical Paper 2018-01-0370 2018 https://doi.org/10.4271/2018-01-0370
- Steinparzer , F. , Mattes , W. , Nefischer , P. , and Steinmayr , T. The New BMW Four-Cylinder Diesel Engine MTZ Worldwide 68 11 6 10 2007 10.1007/BF03226865
- Sellnau , M. , Foster , M. , Moore , W. , Sinnamon , J. et al. Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition SAE Int. J. Adv. & Curr. Prac. in Mobility 1 4 1581 1603 2019 https://doi.org/10.4271/2019-01-1154
- Adcock , I. ,” 2017
- Badra , J.A. , Zubail , A. , and Sim , J. Numerical Investigation into Effects of Fuel's Physical Properties on GCI Engine Performance and Emissions Energy & Fuels 2019 10.1021/acs.energyfuels.9b02340
- Senecal , P. , Richards , K. , and Pomraning , E. CONVERGE (Version 2.4.0) Manual Madison, WI Convergent Science Inc 2018
- Reitz , R.D. and Diwakar , R. Structure of High-Pressure Fuel Sprays SAE Technical Paper 870598 1987 https://doi.org/10.4271/870598
- Parrish , S. , Duke , D. , Grover , R. , Lacey , J. et al. http://www.ca.sandia.gov/ecn/workshop/ECN4/ECN4.php
- Senecal , P.K. , Richards , K.J. , Pomraning , E. , Yang , T. et al. A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations SAE Technical Paper 2007-01-0159 2007 https://doi.org/10.4271/2007-01-0159
- Liu , A.B. , Mather , D. , and Reitz , R.D. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays SAE Technical Paper 930072 1993 https://doi.org/10.4271/930072
- O'Rourke , P.J. Collective Drop Effects on Vaporizing Liquid Sprays Princeton University 1981
- Schmidt , D.P. and Rutland , C.J. A New Droplet Collision Algorithm Journal of Computational Physics 164 1 62 80 2000
- Post , S.L. and Abraham , J. Modeling the Outcome of Drop-Drop Collisions in Diesel Sprays Int. J. Multiphase Flow 28 6 997 1019 2002
- Amsden , A.A. , O'Rourke , P.J. , and Butler , T.D. 1989
- Kodavasal , J. , Kolodziej , C.P. , Ciatti , S. , and Som , S. Computational Fluid Dynamics Simulation of Gasoline Compression Ignition J. Energy Resour. Technol. 137 3 032212-1-13 2015
- Senecal , P.K. , Pomraning , E. , Richards , K.J. , Briggs , T.E. et al. Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length using CFD and Parallel Detailed Chemistry SAE Technical Paper 2003-01-1043 2003 https://doi.org/10.42712003-01-1043
- Li , Y. , Alfazazi , A. , Mohan , B. , Alexandros Tingas , E. et al. Development of a Reduced Four-Component (Toluene/n-Heptane/Iso-Octane/Ethanol) Gasoline Surrogate Model Fuel 247 164 178 2019 https://doi.org/10.1016/j.fuel.2019.03.052
- Golovitchev , V. http://www.tfd.chalmers.se/~valeri/MECH.html
- Lee , C. , Ahmed , A. , Nasir , E.F. , Badra , J. et al. Autoignition Characteristics of Oxygenated Gasolines Combust. Flame 186 Supplement C 114 128 2017 https://doi.org/10.1016/j.combustflame.2017.07.034
- Kodavasal , J. , Pei , Y. , Harms , K. , Ciatti , S. et al. Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation with Multiple Targets on an IBM Blue Gene/Q Supercomputer SAE Technical Paper 2016-01-0602 2016 https://doi.org/10.4271/2016-01-0602
- Pal , P. , Probst , D. , Pei , Y. , Zhang , Y. et al. Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis SAE Int. J. Fuels Lubr. 10 1 56 68 2017 https://doi.org/10.4271/2017-01-0578
- Polley , E.C. and Van Der Laan , M.J. 2010
- Polley , E. , LeDell , E. , Kennedy , C. , Lendle , S. , et al.
- Bergmeir , C. , Molina , D. , and Benıtez , J. Rmalschains: Continuous Optimization using Memetic Algorithms with Local Search Chains (MA-LS-Chains) in R Journal of Statistical Software 2012