This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions
Technical Paper
2020-01-1299
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased. Standard load cases such as “Slow Uphill Drive” cannot be applied to these models. The definition of new load cases for maximum and lifetime temperatures requires comprehensive analysis of specific compartment boundary conditions. This publication focuses on a specific compartment in the trunk of a Mercedes Benz S-Class. The impacts of environmental and HVAC conditions on the temperature of the electronic components are shown by wind tunnel tests. A numerical Design of Experiments (DoE) is used to determine individual boundary condition effects, such as ambient temperature or the mass flow rate through the compartment. A vehicle endurance test provides an overview of the lifetime temperatures and the corresponding boundary conditions for the electronic components in this compartment. The results show that the boundary conditions are mainly dependent on the ambient temperature.
Authors
Topic
Citation
Bernhard, A., Reister, H., Binner, T., Wiedemann, J. et al., "Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions," SAE Technical Paper 2020-01-1299, 2020, https://doi.org/10.4271/2020-01-1299.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 |
Also In
References
- Reister , H. and Bauer , W. Simulation Process of the Heat Protection of a Full Vehicle SAE Technical Paper 2012-01-0635 2012 https://doi.org/10.4271/2012-01-0635
- Disch , M. , Widdecke , N. , Wiedemann , J. , Reister , H. , and Weidmann , E.-P. Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive SAE Technical Paper 2013-01-0873 2013 https://doi.org/10.4271/2013-01-0873
- Winner , H. , Hakuli , S. , and Wolf , G. Handbuch Fahrerassistenzsysteme Springer 2012 https://doi.org/10.1007/978-3-8348-8619-4
- Stahlhofer , N. and Borodulik , L. Big-Data-Management für das autonome Fahren ATZ Elektronik 26 29 2018 https://doi.org/10.1007/s35658-018-0038-5
- Steiger , G. Towards a New Mobility - The Driver Becomes the Passenger Isermann , R. Fahrerassistenzsysteme 2016 Springer eVieweg 2018 https://doi.org/10.1007/978-3-658-21444-9_1
- Doshi , N. , Balasubramanian , A. , and Katuri , S. High Speed Raw Radar Data Acquisition Using MIPI CSI2 Interface for Deep Learning in Autonomous Driving Applications SAE Technical Paper 2019-26-0020 2019 https://doi.org/10.4271/2019-26-0020
- Maurer , M. , Gerdes , C. , Lenz , B. , and Winner , H. 2015 https://doi.org/10.1007/978-3-662-45854-9
- Chen , S. , Huang , L. , Bai , J. , Jiang , H. , and Chang , L. Multi-Sensor Information Fusion Algorithm with Central Level Architecture for Intelligent Vehicle Environmental Perception System SAE Technical Paper 2016-01-1894 2016 https://doi.org/10.4271/2016-01-1894
- ISO26262 2011
- Bernhard , A. , Binner , T. , Reister , H. , Widdecke , N. , and Wiedemann , J. 2019
- Lienig , J. and Thiele , M. 2018 https://doi.org/10.1007/978-3-319-73558-0
- JEDEC 2013
- LV124 Standard
- Eller , J. Stützpunktbasierter Ansatz zur Vorhersage von Bauteiltemperaturkollektiven im Thermomanagement des Gesamtfahrzeugs Springer Vieweg 2017 https://doi.org/10.1007/978-3-658-18690-6
- Eller , J. , Binner , T. , Reister , H. , Widdecke , N. , and Wiedemann , J. Analyse von Dauerlaufversuchen als Basis für die Ermittlung von Temperaturkollektiven an Fahrzeugbauteilen SIMVEC 2014, 17. Kongress Simulation und Erprobung im Fahrzeugbau, Berechnung, Prüfstands- und Straßenversuch Baden-Baden 2014
- Siebertz , K. , van Bebber , D. , and Hochkirchen , T. Statistische Versuchsplanung Berlin Heidelberg Springer-Verlag 2010 https://doi.org/10.1007/978-3-642-05493-8
- Strupp , N.C. , Lemke , N. , and Köhler , J. 2009
- Rigoni , E. and Silvetti , S. 2017
- Pianosi , F. , Beven , K. , Freer , J. , Hall , J.W. , Rougier , J. , Stephenson , D.B. , and Wagener , T. 2016 https://doi.org/10.1016/j.envsoft.2016.02.008
- Rigoni , E. and Ricco , L. 2011