Impact to Cooling Airflow from Truck Platooning

2020-01-1298

04/14/2020

Event
WCX SAE World Congress Experience
Authors Abstract
Content
We investigate tradeoffs between the airflow strategies related to engine cooling and the aerodynamic-enabled fuel savings created by platooning. By analyzing air temperatures, engine temperatures and cooling air flow at different platoon distances, we show the thermal impact to the engine from truck platooning. Previously, we collected wind and thermal data for numerous heavy-duty truck platoon configurations (gaps ranging from 4 to 87 meters) and reported the significant fuel savings enabled by these configurations. The fuel consumption for all trucks in the platoon were measured using the SAE J1321 gravimetric procedure as well as calibrated J1939 instantaneous fuel rate while travelling at 65 mph and loaded to a gross weight of 65,000 lb. Using thermocouples mounted 1 m ahead of each truck, anemometers at the grill and a grid of under-hood thermocouples as well as J1939 reported engine temperatures, we analyze the impact to critical operating temperatures from different platoon configurations. Results show significant changes in the engine and under-hood air temperatures that correlate with vehicle gap distance and platoon position.
Meta TagsDetails
DOI
https://doi.org/10.4271/2020-01-1298
Pages
11
Citation
Zhang, C., and Lammert, M., "Impact to Cooling Airflow from Truck Platooning," SAE Technical Paper 2020-01-1298, 2020, https://doi.org/10.4271/2020-01-1298.
Additional Details
Publisher
Published
Apr 14, 2020
Product Code
2020-01-1298
Content Type
Technical Paper
Language
English