This content is not included in
your SAE MOBILUS subscription, or you are not logged in.
Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles
Technical Paper
2020-01-1282
ISSN: 0148-7191, e-ISSN: 2688-3627
This content contains downloadable datasets
Annotation ability available
Sector:
Language:
English
Abstract
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control on a chassis dynamometer typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input. We present a system for computer control of brake and accelerator inputs on a TBW- and BBW-equipped vehicle. The system injects analog signals into the vehicle’s wiring harness, bypassing the pedals and obviating mechanical actuation and brake-by-dyno. The system combines feedforward control based on recorded human pedal application with feedback control based on human-driven speed. This combination produces repeatable driving, enabling precise measurement of the impact (e.g. fuel or battery use) of small changes to the powertrain (e.g. engine calibration or lubricant) or test cycle (e.g. speed or grade). The system’s J2951-defined energy-efficiency rating and absolute speed-change rating were more consistent than a human’s by factors of 6.63 and 4.10, respectively. The effect of braking intensity on braking regeneration is quantified using the system.
Authors
Topic
Citation
Gross, M., Hamermesh, J., Jonson, K., and Alden, J., "Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles," SAE Technical Paper 2020-01-1282, 2020, https://doi.org/10.4271/2020-01-1282.Data Sets - Support Documents
Title | Description | Download |
---|---|---|
Unnamed Dataset 1 | ||
Unnamed Dataset 2 | ||
Unnamed Dataset 3 |
Also In
References
- Blanks , M. and Forster , N. Technical Approach to Increasing Fuel Economy Test Precision with Light Duty Vehicles on a Chassis Dynamometer SAE Technical Paper 2016-01-0907 2016 https://doi.org/10.4271/2016-01-0907
- Chapin , C. Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques SAE Technical Paper 810828 1981 https://doi.org/10.4271/810828
- El-Sharif , I.A. , Hareb , F.O. , and Zerek , A.R. 2014 Design of Discrete Time Pid Controller International Conference on Control, Engineering and Information Technology
- SAE International Surface Vehicle Recommended Practice Nov. 2011
- Glantz , S.A. , Slinker , B.K. , and Neilands , T.B. Primer of Applied Regression and Analysis of Variance 309 New York McGraw-Hill 1990
- Rengarajan , S. , Hotz , S. , Hirsch , C. , Lobato , P. et al. Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles SAE Technical Paper 2019-01-0116 2019 https://doi.org/10.4271/2019-01-0116
- Rengarajan , S. , Hotz , S. , Sarlashkar , J. , Gankov , S. et al. Energy Efficient Maneuvering of Connected and Automated Vehicles SAE Technical Paper 2020-01-0583 2020